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Lectures

1. Lecture 1: The Dirichlet Laplacian as a Model Problem for
Shape Recognition
2. Lecture 2: Numerical Schemes and Statistically Recognizing
Shape
3. Lecture 3: Shape Recognition Using Neumann and Higher
Order Eigenvalue Problems



What is shape recognition?

◮ Shape recognition is a key component of (automated) object
recognition, matching, and analysis

◮ A shape description method generates a feature vector that
attempts to uniquely characterize the shape of an object

◮ This is one of the least developed areas of Pattern Recognition

A good feature vector associated with an object should be ..

◮ invariant under scaling

◮ invariant under rigid motion (rotation and translation)

◮ tolerant to noise and reasonable deformation

◮ should react differently to images from different classes,
producing feature vectors different from class to class

◮ use least number of features to design faster and simpler
classification algorithms



Feature Vectors Based on Eigenvalues of Elliptic Operators

◮ We will build feature vectors out of eigenvalues

◮ We think of a shape as a domain Ω ⊂ R
2

◮ We think of a shape as a binary image

◮ Four model problems will be presented

◮ For each, four model features vectors will be studied

◮ We will illustrate feature recognition schemes for synthetic,
and real images and compare results for the various model
problems



The Dirichlet Laplacian as a Model Problem
Let Ω ⊂ R

d be a bounded domain, d ≥ 2. Consider the Dirichlet
(or Fixed Membrane) Problem:

−∆u = λ u in Ω (1)

u = 0 on ∂Ω

Eigenmodes: 0 < λ1 < λ2 ≤ λ3 ≤ · · ·
Eigenfunctions: u1, u2, u3, · · · .
One can characterize these eigenvalues using the Rayleigh-Ritz
Principle:

λk+1 ≤

∫

Ω |∇φ|2dx
∫

Ω φ2dx

subject to
∫

Ω
φ uidx = 0, φ = 0 on ∂Ω

for i = 1, 2, . . . , k .



Some inequalities and stability results:

For Ω ⊂ R
2:

Rayleigh-Faber-Krahn Inequality (1890s, 1920’s):

λ1 ≥
πj20,1

|Ω|

where j0,1 = 2.4048 . . .

Ashbaugh-Benguria (1991) inequality (formerly PPW conjecture,
1956)

λ2

λ1
≤

j21,1

j20,1

= 2.53873 . . . .

Here j1,1 = 3.83171 . . .These are isoperimetric inequalities:
Equality holds when Ω is a disk.
A. Melas (1992, 1993) proved stability results for these inequalities
when Ω is convex. (These results hold when Ω ⊂ R

d .)



The Counting Function and Riesz Means

Theorem (Weyl, 1910/1911)

λk ∼
4π2k2/d

(Cd |Ω|)2/d
=

k2/d

(

Lcl
0,d |Ω|

)2/d
as k → ∞,

where Cd =
πd/2

Γ(d/2 + 1)
= volume of the d−Ball.

One can recast this theorem in terms of the counting function:

N(z) =
∑

λk≤z

1 = sup
λk≤z

k .

N(z) ∼ Lcl
0,d |Ω| zd/2 as z → ∞

with Lcl
0,d = Cd/(2π)d .



The Riesz mean is a “smoothed staircase” function.
By convention, the counting function is sometimes written as

N(z) =
∑

k

(z − λk)0+ .

The reason for this is to parallel the definition of the Riesz mean of
order ρ > 0

Rρ(z) =
∑

k

(z − λk)ρ
+ .

Here x+ = max{0, x} is called the ramp function.

Properties:

(i)

Rρ(z) = ρ

∫ ∞

0
(z − t)ρ−1

+ N(t)dt.

(ii)

Rσ+δ(z) =
Γ(σ + δ + 1)

Γ(σ + 1) Γ(δ)

∫ ∞

0
(z − t)δ−1

+ Rσ(t)dt.



Riesz Means, cont’d

Remark: (i) These properties are sometimes referred to as Riesz
iteration or the Aizenman-Lieb procedure. These are
Riemann-Liouville fractional transforms (see the Bateman Project,
Vol. I)
(ii) Formulas rely on Fubini and the definition of the Beta function.

Basic references: (1) Article by Dirk Hundertmark in Barry
Simon’s Festschrift (2006); (2) “Typical Means” by
Chandrasekharan & Minakshisundaram (1954).

Rρ(z) ∼ Lcl
ρ,d |Ω| zρ+d/2 as z → ∞

with Lcl
ρ,d = Γ(ρ+1)

(4π)d/2 Γ(ρ+d/2+1)
.



Kac and Berezin-Li-Yau
Heuristic argument: Apply Laplace transform

Z (t) = partition function =
∞
∑

k=1

e−λk t =

∫ ∞

0
e−tµN(µ)dµ.

One then gets Kac’s asymptotic formula (see “Can one hear the
shape of a drum?”, 1966)

Z (t) =
∞
∑

k=1

e−λk t ∼
|Ω|

(4πt)d/2
.

z → ∞ corresponds to t → 0+

Theorem (Berezin). For ρ ≥ 1, one has

Rρ(z) ≤ Lcl
ρ,d |Ω| zρ+d/2,

Idea of proof: Prove for ρ = 1, then apply Riesz iteration.



Berezin-Li-Yau (Laptev-Weild, Journées EDP, 2000)
Let:

ûk(ξ) =
1

(2π)d

∫

Ω
uk(x) e ix ·ξdx .

Clearly

λk =

∫

Rd

|ξ|2|ûk(ξ)|2dξ and

∫

Rd

|ûk |
2dξ = 1

Therefore
∑

k

(z − λk)+ =
∑

k

(∫

Rd

(

z − |ξ|2
)

|ûk(ξ)|2dξ

)

+

≤

∫

Rd

(

z − |ξ|2
)

+

∑

k

|ûk(ξ)|2dξ

where Jensen’s inequality is used for every individual integral.
Finish with

∑

k

|ûk(ξ)|2 =
1

(2π)d

∫

Ω
|e−ix ·ξ|2 dx =

|Ω|

(2π)d
.



Legendre Transform

Definition: The Legendre transform is defined by:

Λ{f }(w) = sup
z≥0

(w z − f (z)) .

Basic properties: (i)

f (z) ≤ g(z) ⇒ Λ{f }(w) ≥ Λ{g}(w).

(ii)

Λ
{

∑

i

(z − λi )+

}

(w) = (w − [w ]) λ[w ]+1 +

[w ]
∑

i=1

λi ,

(iii)

Λ{c
z1+d/2

1 + d/2
} = c−2/d d

d + 2
w1+2/d



Inequalities of Li-Yau and Kac
Applying the Legendre Transform to the Berezin inequality (1972)
leads to the

Corollary (Li-Yau inequality, 1983):

k
∑

i=1

λi ≥
d

d + 2

4π2k1+2/d

(Cd |Ω|)2/d
.

Corollary (Kac, 1966):

Z (t) ≤
|Ω|

(4π t)d/2

Proof: Apply Laplace transform to Berezin inequality.

Corollary: For 0 < ρ < 1

Rρ(z) ≤ Fρ,d Lcl
ρ,d |Ω| zρ+d/2.

Remark: Frank, Loss, Weidl (2008) have the best constant Fρ,d .



Some of the Tools Used to Estimate Eigenvalues
Rayleigh-Ritz Ratio: For f defined on Ω such that f = 0 on ∂Ω

R(f ) =

∫

Ω |∇f |2dx
∫

Ω f 2dx

Poincaré (1904): For a complete family of functions
g1, g2, . . . , gn, . . . vanishing along ∂Ω form

φ =

n
∑

j=1

tjgj

This leads to

R(φ) =

∑n
i ,j=1 aij ti tj

∑n
i ,j=1 bij ti tj

where

aij =

∫

Ω
∇gi · ∇gj dx bij =

∫

Ω
gigjdx .

With A = (aij) and B = (bij), form the equation
∣

∣

∣
A − λB

∣

∣

∣
= 0



Some of the Tools Used to Estimate Eigenvalues

The roots λ′
1 ≤ λ′

2 ≤ . . . ≤ λ′
n of this equation are such that

λ1 ≤ λ′
1, , λ2 ≤ λ′

2, . . . , λn ≤ λ′
n

Minimax Principle (Fischer, 1905): Formulation preferred by
Finite Difference people

λk ≤ MinSk
maxφ∈Sk

R(φ)

where Sk is the k−dimensional linear space generated by
g1, g2, . . . , gk

Maximin Principle (Courant): Formulation preferred by
analysts/geometers

λk ≤ MaxTk−1
Minφ⊥Tk−1

R(φ)

where Tk−1 is a k − 1 dimensional linear space and φ = 0 on ∂Ω.



Universal Eigenvalue Bounds
Payne-Pólya-Weinberger (1956)

λk+1 − λk ≤
4

d





1

k

k
∑

j=1

λj



 and
λk+1

λk

≤ 1 +
4

d

Hile-Protter (1981)

k
∑

i=1

λi

λk+1 − λi

≥
dk

4

H.C. Yang (1991/1995)

k
∑

i=1

(λk+1 − λi )
2 ≤

4

d

k
∑

i=1

λi (λk+1 − λi )

λk+1 ≤
(

1 +
4

d

)

λk



Universal Eigenvalue Bounds

Harrell-Stubbe (1997), Ashbaugh-H., For ρ ≥ 2

k
∑

i=1

(λk+1 − λi )
ρ ≤

2ρ

d

k
∑

i=1

λi (λk+1 − λi )
ρ−1

For ρ ≤ 2

k
∑

i=1

(λk+1 − λi )
ρ ≤

4

d

k
∑

i=1

λi (λk+1 − λi )
ρ−1

Variational Proof: Test function + “Optimal Cauchy-Schwarz”:
φi = xui −

∑k
j=1 αijuj , where αij = 〈xui , uj〉, and x = x1, . . . , xd

the coordinate functions.
Commutator Proof (a.k.a. sum rules of quantum mechanics):
Technique pioneered by Harrell-Stubbe, followed by
Levitin-Parnovski, El-Soufi-Harrell-Ilias, Harrell-H., Harrell-Yolcu.



Commutators

[A, B] = AB − BA

First and Second Commutation:

[−∆, xα] = −2
∂

∂xα

[[−∆, xα], xα] = −2

Consequence:

(λm − λj) 〈xαuj , um〉 = 〈[−∆, xα]uj , um〉



Commutators, cont’d
Proof (brief):

∑

j

(z − λj)
2
+ 〈[−∆, xα]uj , xαuj〉 ≤

∑

j

(z − λj)+ ‖[−∆, xα]uj‖
2

Use first commutation formula to get:

‖[−∆, xα]uj‖
2 = 4

∫

Ω

(

∂uj

∂xα

)2

Use second commutation formula to get:

〈[−∆, xα]uj , xαuj〉 =

∫

Ω
u2
j = 1

Sum over α = 1, . . . , d to get

◮
∑

j

(z − λj)
2
+ ≤

4

d

∑

j

λj(z − λj)+



Monotonicity Principle for Riesz Means

◮ For ρ ≥ 2 and z ≥ λ1,

∑

j

(z − λj)
ρ
+ ≤

2ρ

d

∑

j

λj(z − λj)
ρ−1
+

and consequently
Rρ(z)

zρ+ d
2

is a nondecreasing function of z .

◮ For ρ ≤ 2 and z ≥ λ1,

∑

j

(z − λj)
ρ
+ ≤

4

d

∑

j

λj(z − λj)
ρ−1
+

and consequently
Rρ(z)

zρ+ ρd
4

is a nondecreasing function of z .



Sum Rules vs Rayleigh-Ritz

◮ One can get these from first principles through sum rules
(Harrell-Stubbe, Levitin-Parnovski, Harrell-H.,
El-Soufi-Harrell-Ilias, Harrell-Stubbe, extensions by
Harrell-Yolcu);

◮ Alternative way via Rayleigh-Ritz: Ashbaugh-H., Colbois,
Ilias-Makhoul, Cheng-Yang, Cheng-Yang-Sun, Wang-Xu, Wu,
Wu-Cao, Jöst-Li-Jöst-Wang-Xu, etc.

◮ Sum rules + Integral transforms: One can obtain all from the
ρ = 2 case (for the model problem)

◮ These are particular cases of more general monotonicity
principles for “trace controllable functions” as shown in recent
work by Harrell-Stubbe



What does the monotonicity principle entail?
It leads universal bounds for ratios of eigenvalues which are of
Weyl-type.

◮ (Harrell-H., 2008) For k ≥ j ≥ 1,

λk+1/λj ≤

(

1 +
4

d

)(

k

j

) 2
d

.

case j = 1 (Cheng-Yang, 2007); case j = k (Yang, 91/95)

◮ (Harrell-H., 2008) For k ≥ j
1+ d

2

1+ d
4

,

λk/λj ≤ 2

(

1 + d
4

1 + d
2

)1+ 2
d (k

j

) 2
d

.

◮ Harrell-Stubbe (2009): For k ≥ j ,

λk/λj ≤
1 + d

4

1 + d
2

(

k

j

) 2
d

.



Proof of λk+1 bound
Let n be the largest such that λn ≤ z < λn+1, then

R2(z) = n
(

z2 − 2zλn + λ2
n

)

.

For any integer j and z ≥ λj ,

R2(z) ≥ Q(z , j) := j
(

z2 − 2zλj + λ2
j

)

.

By monotonicity, for z ≥ zj ≥ λj ,

R2(z) ≥ Q(zj , j)

(

z

zj

)2+ d
2

.

Also, by Cauchy-Schwarz λj
2
≤ λ2

j , so

Q(z , j) = j
(

(

z − λj

)2
+ λ2

j − λj
2
)

≥ j
(

z − λj

)2
.



Proof of the λk+1 bound, cont’d
Combining and choosing z = zj =

(

1 + 4
d

)

λj , one gets

R2(z) ≥
jz2+ d

2

(

1 + d
4

)2 ((
1 + 4

d

)

λj

)
d
2

.

From monotonicity, one gets

R1(z) ≥

(

1 +
d

4

)

1

z
R2(z),

and,

N(z) = R0(z) ≥

(

1 +
d

4

)2
1

z2
R2(z)

and therefore,

N(z) ≥ j

(

z
(

1 + 4
d

)

λj

) d
2

.

To get the bound statement for λk+1, simply send z → λk+1 from
below.



Three Basic Messages

1. (Integral) transforms link various inequalities proved by various
techniques

Yang ⇔ Harrell-Stubbe, ρ ≥ 2
⇓ ⇓

Kac ⇔ Berezin-Li-Yau, ρ ≥ 2

They provide a parallel framework to convexity.

2. Sum rules play a key role.

3. By Legendre transform, any bound for a Riesz mean of order
ρ = 1 which is of Weyl-type can be converted to statements about
ratios of eigenvalues (or ratios of means of eigenvalues) which are
of Weyl-type.



Riesz iteration: ρ = 2 implies ρ > 2:

∑

k

(z − λk)2+ ≤
4

d

∑

k

λk (z − λk)+ ,

Therefore, for t ≤ z :

∑

k

(z − λk − t)2+ ≤
4

d

∑

k

λk (z − λk − t)+ .

Multiply both sides by tρ−3, and then integrate between 0 and ∞.

∑

k

(z − λk)ρ
+ ≤

4

d

Γ(ρ + 1)Γ(2)

Γ(ρ)Γ(3)

∑

k

λk (z − λk)ρ−1
+ .

With Γ(ρ + 1) = ρ Γ(ρ), this simplifies to

∑

k

(z − λk)ρ
+ ≤

2ρ

d

∑

k

λk (z − λk)ρ−1
+ ,

Note: The constant in this inequality is the sharpest possible.



ρ = 2 implies ρ < 2:

This is a consequence of the “Weighted Reverse Chebyshev
Inequality”:
Let {ak} and {bk} be two real sequences, one of which is
nondecreasing and the other nonincreasing, and let {wk} be a
sequence of nonnegative weights. Then,

m
∑

k=1

wk

m
∑

k=1

wk akbk ≤
m
∑

k=1

wk ak

m
∑

k=1

wk bk .

Make the choices wk = (z − λk)ρ1
+ , ak = λk

(z−λk )+
, and

bk = (z − λk)ρ2−ρ1
+ with ρ1 ≤ ρ2 ≤ 2, the conditions of the lemma

are satisfied and one gets:

∑

k (z − λk)ρ1
+

∑

k (z − λk)ρ1−1
+ λk

≤

∑

k (z − λk)ρ2
+

∑

k (z − λk)ρ2−1
+ λk

.

then, set ρ1 = ρ and ρ2 = 2



Basic message, revisited

Berezin-Li-Yau (for ρ ≥ 2) follows from Harrell-Stubbe, and
semiclassical asymptotic formula.

◮ For ρ ≥ 2 and z ≥ λ1,

Rρ(z)

zρ+ d
2

is a nondecreasing function of z .

◮

lim
z→∞

Rρ(z)

zρ+ d
2

= Lcl
ρ,d |Ω|



Harrell-Stubbe + Asymptotic ⇒ Kac’s inequality

Apply the Laplace transform to both sides of

∞
∑

k=1

(z − λk)2+ ≤
4

d

∞
∑

k=1

λk (z − λk)+ ,

and use

L
(

(z − λk)ρ
+

)

=
Γ(ρ + 1) e−λk t

tρ+1
.

to obtain

Z (t) ≤ −
2

d
t Z ′(t)

or, after combining,
(

td/2 Z (t)
)′

≤ 0.

then employ

lim
t→0+

td/2Z (t) =
|Ω|

(4π)d/2
.



Harrell-Stubbe + Asymptotic ⇒ Kac’s inequality

Therefore td/2Z (t) is a nonincreasing function which saturates
when t → 0:

Z (t) ≤
|Ω|

(4πt)d/2

This is Kac’s inequality.



From Berezin-Li-Yau to Kac’s

Start with
Rρ(λ) ≤ Lcl

ρ,d |Ω|λρ+d/2

Apply the Laplace transform to both sides

Γ(ρ + 1)

tρ+1
Z (t) ≤ Lcl

ρ,d |Ω|
Γ(ρ + 1 + d

2 )

tρ+1+ d
2

.

Upon simplification, it obtains

Z (t) ≤
|Ω|

t
d
2

Lcl
ρ,d Γ(ρ + 1 + d

2 )

Γ(ρ + 1)
.

Using the definition of Lcl
ρ,d leads to Kac’s inequality.



Monotonicity + Kac’s Asymptotic ⇒ Berezin-Li-Yau,

when ρ ≥ 2:

Rρ(µ + z0) ≥ Rρ(z0)

(

µ + z0

z0

)ρ+d/2

.

The Laplace transform of a shifted function

L (f (µ + z0)) = ez0 t

(

L(f ) −

∫ z0

0
e−tµf (µ)dµ

)

Therefore, for each individual term on the LHS, we obtain

L
(

(µ + z0 − λk)ρ
+

)

= e(z0−λk)+t
(Γ(ρ + 1)

tρ+1

−

∫ (z0−λk )+

0
e−tµµρdµ

)

.



Monotonicity + Kac’s Asymptotic ⇒ Berezin-Li-Yau,

when ρ ≥ 2:
On the RHS, one has

L
(

(µ + z0)
ρ+d/2

)

= ez0 t
(Γ(ρ + 1 + d/2)

tρ+1+d/2

−

∫ z0

0
e−tµµρ+d/2dµ

)

.

We note the appearance of the incomplete γ function

γ(a, x) =

∫ x

0
e−µµa−1dµ.

Putting these facts together we are led to

∑

k

e(z0−λk )+t
{Γ(σ + 1)

tσ+1
−

1

tρ+1
γ (σ + 1, (z0 − λk)+t)

}

≥

Rσ(z0)

z
ρ+d/2
0

ez0 t
{Γ(ρ + 1 + d/2)

tρ+1+d/2
−

1

tρ+1+d/2
γ(ρ + 1 + d/2, z0 t)

}

.



Monotonicity + Kac’s Asymptotic ⇒ Berezin-Li-Yau,

when ρ ≥ 2:
We now notice that

∑

k

e(z0−λk )+t ≤ ez0 t
∞
∑

k=1

e−λk t = ez0 t Z (t).

Therefore, after a little simplification,

Γ(σ + 1)

Γ(ρ + 1 + d/2)
td/2Z (t) ≥

Rσ(z0)

z
ρ+d/2
0

+ R(t),

where the remainder term R(t) is given by the long expression

R(t) =
td/2

Γ(ρ + 1 + d/2)
e−z0t

∑

k

e(z0−λk )+t γ(σ + 1, (z0 − λk)+ t)

−
td/2

Γ(ρ + 1 + d/2)

Rσ(z0)

z
ρ+d/2
0

γ(ρ + 1 + d/2, z0 t)

Notice that limt→0 R(t) = 0. Sending t → 0, and incorporating
Kac’s semiclassical leads to result.



Integral Transforms and Universal Lower Bounds for Riesz
Means

Remember some of the spectral functions we dealt with

◮ The counting function N(z)

◮ The Riesz Mean of order ρ: Riemann-Louiville fractional
transform of N(z)

◮ The “partition function” Z (t)

◮ The spectral zeta function

ζspec(ρ) =
∞
∑

k=1

1

λρ
k

This is the Mellin transform of the Z (t).



A General Setting for New Universal Inequalities
For a nonnegative function f on R+ such that

∫ ∞

0
f (t)

(

1 + t−d/2
) dt

t
< ∞

define

F (s) :=

∫ ∞

0
e−st f (t)

dt

t
(2)

and let
G (s) := Wd/2{F (z)}(s), (3)

where

Wµ{F (z)}(s) :=
1

Γ(µ)

∫ ∞

s

F (z) (z − s)µ−1 dz

denotes the Weyl transform of order µ of the function F (z).
Bateman project:

G (s) =

∫ ∞

0

e−st

td/2
f (t)

dt

t
.



Universal Lower Bounds amenable to the above setting:
Theorem (Harrell-H.): For ρ ≥ 1

Rρ(z) ≥ H−1
d

Γ(1 + ρ)Γ(1 + d/2)

Γ(1 + ρ + d/2)
λ
−d/2
1 (z − λ1)

ρ+d/2
+ .

Here:

Hd =
2 d

j2
d/2−1,1J

2
d/2(jd/2−1,1)

.

As usual, jα,p denotes the p-th positive zero of the Bessel function
Jα(x).

Z (t) ≥
Γ(1 + d/2)

Hd

e−λ1t

(λ1 t)d/2
.

For ρ > d/2

ζspec(ρ) ≥
Γ(1 + d/2)

Hd

Γ(ρ − d/2)

Γ(ρ)

1

λρ
1

.

This provides correction for the zeta function when ρ is close to
d/2.



Universal Lower Bounds Via Weyl transforms

For F (s) and G (s) as defined above, and related by the Weyl
transform,

∞
∑

j=1

F (λj) ≥
Γ(1 + d/2)

Hd

λ
−d/2
1 G (λ1).

Note: This inequality is equivalent to the partition function bound
found above.



Work in Progress: The Neumann Case
For ρ ≥ 1

∞
∑

j=1

(z − µj)
ρ
+ ≥ Lcl

ρ,d |Ω| zρ+d/2.

∞
∑

j=1

e−µj t ≥
|Ω|

(4πt)d/2
.

For ρ > d/2,

ζHur (ρ) =
∞
∑

j=1

1

(µj + α)ρ
≥

Γ(ρ − d/2)

(4π)d/2Γ(ρ)

|Ω|

αρ−d/2
.

For F (s) and G (s) as defined above, and related by the Weyl
transform, and α > 0

∞
∑

j=1

F (µj + α) ≥
|Ω|

(4π)d/2
G (α).



From Bethe Sum Rule to a Theorem of Laptev:

Our starting point is the Bethe sum rule (see for example,
Levitin-Parnovski, 2002)

∑

k

(λk − λj) |

∫

Ω
ukuje

ix ·ξdx |2 = |ξ|2.

This provides alternative proof of the following result of Laptev
(There are other proofs by L. H., ’08, Frank-Laptev-Molchanov,
’09)
Theorem [Laptev, 96]

∑

j

(z − λj)+ ≥ Lcl
1,d ũ−2

1 (z − λ1)
1+d/2
+ . (4)

where ũ1 = ess sup|u1| and Lcl
1,d is the classical constant.



From Bethe Sum Rule to Universal Inequalities:
Proof: Let

ajk(ξ) =

∫

Ω
ukuje

ix ·ξdx

Take j = 1.
∑

k

(λk − λ1) |a1k(ξ)|2 = |ξ|2.

Let z > λ1. One can always find an integer N such that

λN < z ≤ λN+1,

allowing the sum to be split as

∑

k

=
N
∑

k=1

+
∞
∑

k=N+1

.

We can replace each term in
∑∞

k=N+1 (. . . ) by

(z − λ1) |a1k(ξ)|2.



From Bethe Sum Rule to Universal Inequalities:
Hence

N
∑

k=1

(λk − λ1) |a1k(ξ)|
2 + (z − λ1)

(

1 −

N
∑

k=1

|a1k(ξ)|
2

)

≤ |ξ|2.

Here we have exploited the completeness of the orthonormal family
{uk}

∞
k=1, noting that

∞
∑

k=1

|a1k(ξ)|2 =

∫

Ω
|u1e

ix ·ξ|2 = 1.

Therefore
∞
∑

k=N+1

|a1k(ξ)|2 = 1 −
N
∑

k=1

|a1k(ξ)|2.

These identities reduce our inequality to

(z − λ1)+ ≤ |ξ|2 +
∑

k

(z − λk)+ |a1k(ξ)|2. (5)

(The statement is true by default for z ≤ λ1.)



From Bethe Sum Rule to Universal Inequalities:
One then integrates over a ball Br ⊂ R

d of radius r . To simplify
the notation we use

|Br | = volume of Br = Cd rd ,

and

I2(Br ) =

∫

Br

|ξ|2dξ =
d

d + 2
Cd rd+2.

Our main inequality then reduces to

(z − λ1)+ ≤
I2(Br )

|Br |
+
∑

k

(z − λk)+

∫

Br
|a1k(ξ)|2dξ

|Br |
.

By the Plancherel-Parseval identity

1

(2π)d

∫

Br

|a1k(ξ)|2dξ ≤

∫

Ω
|u1|

2|uk |
2dx

≤ ess sup|u1|
2

∫

Ω
|uk(x)|2dx

= ess sup|u1|
2.



From Bethe Sum Rule to Universal Inequalities:
Riesz iteration leads to the corollary:
For ρ ≥ 1

∑

k

(z − λk)ρ
+ ≥ Lcl

ρ,d ũ−2
1 (z − λ1)

ρ+d/2
+ . (6)

We also have the following universal lower bound (H., Trans.
AMS, 2008)

∑

k

(z − λk)+ ≥
2

d + 2
H−1

d λ
−d/2
1 (z − λ1)

1+d/2
+ .

where

Hd =
2 d

j2
d/2−1,1J

2
d/2(jd/2−1,1)

. (7)

This is a consequence of the Chiti inequality (satisfies Queen Dido
property):

ũ2
1 ≤ HdLcl

0,dλ1
d/2.



Work of Melas and corrections to Berezin-Li-Yau

A. Melas (Proc. AMS, 2003) proved the following inequality.

k
∑

i=1

λi ≥
d

d + 2

4π2k1+2/d

(Cd |Ω|)2/d
+ Md

|Ω|

I (Ω)
k .

Here I (Ω) is the “second moment” of Ω, while Md is a constant
that depends on the dimension d . This is a correction to BLY.
If one applies the Legendre transform to this inequality:

Rρ(z) ≤ Lcl
ρ,d |Ω|

(

z − Md
|Ω|

I (Ω)

)ρ+ d
2

+

,

for ρ ≥ 1.



The Work of Melas
Applying the Laplace transform leads to the following correction of
Kac’s inequality

∞
∑

i=1

e−λi t ≤
|Ω|

(4πt)d/2
e
−Md

|Ω|

I (Ω)
t

. (8)

Finally, applying the Mellin transform to this inequality leads to the
following

ζspec(ρ) ≤
1

(4π)d/2

Γ(ρ − d/2)

Γ(ρ)
|Ω|

(

Md

|Ω|

I (Ω)

)
d
2 −ρ

.

In fact we have the general inequality, as above:
For F (s) and G (s) as related by the Weyl transform, one has

∞
∑

j=1

F (λj) ≤
1

(4π)d/2
|Ω|G

(

Md
|Ω|

I (Ω)

)

.



Conjectures (For d ≤ 23 see L. Geisinger and T. Weidl)

∞
∑

j=1

F (λj) ≤
1

(4π)d/2
|Ω|G (|Ω|−2/d)

Here 1
|Ω|2/d replaces Md

|Ω|
I (Ω) . For instance:

1. For ρ > d/2,

ζspec(ρ) ≤
Γ(ρ − d/2)

Γ(ρ)

|Ω|2ρ/d

(4π)d/2
.

2. Conjecture(s) would follow from a correction to Kac’s inequality:

∞
∑

i=1

e−λi t ≤
|Ω|

(4πt)d/2
e
−

t

|Ω|2/d
.

3. These would follow from the ρ ≥ 1 improvement for Riesz
means:

Rρ(z) ≤ Lcl
ρ,d |Ω|

(

z −
1

|Ω|2/d

)ρ+ d
2

+

.



Conjectures

Iteration on dimension for a parallelpiped

Ω = I1 × I2 × · · · × Id :

I1 = [0, π], L = π; Lcl
1,1 = 2/(3π), λk = k2.

n
∑

k=1

k2 =
n3

3
+

n2

2
+

n

6
≥

n3

3
+

n

6

Apply Legendre transform:

∑

(z − λk)+ ≤
2

3

(

z −
1

6

)3/2

< Lcl
1,1 π

(

z −
1

π2

)3/2

Apply Legendre, etc.
“Lifting” works for Ω = Ω1 × Ω2, etc.

λkℓ = µk + νℓ.



Conjectures
Do they violate any of the known inequalities? No.
Tested against Faber-Krahn, Li-Yau, Pólya (when the domain tiles
R

d)

ζ(2ρ/d)

(4π2)
ρ C

2ρ/d

d ≤
1

(4π)
d

Γ(ρ − d/2)

Γ(ρ)
≤

(

d + 2

d

)ρ
ζ(2ρ/d)

(4π2)
ρ C

2ρ/d

d .

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8
d=2

Li-Yau

Conjecture

Polya

Figure: Upper Bound Estimate for |Ω|−2ρ/d ζspec(ρ)
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Next Lecture:

◮ Shape Recognition Using Eigenvalues of the Dirichlet
Laplacian

◮ Finite Difference Schemes for Computing Eigenvalues

Merci!


