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Lectures

1. Lecture 1: The Dirichlet Laplacian as a Model Problem for
Shape Recognition

2. Lecture 2: Numerical Schemes and Statistically Recognizing
Shape

3. Lecture 3: Shape Recognition Using Neumann and Higher
Order Eigenvalue Problems



What is shape recognition?

» Shape recognition is a key component of (automated) object
recognition, matching, and analysis

» A shape description method generates a feature vector that
attempts to uniquely characterize the shape of an object

» This is one of the least developed areas of Pattern Recognition

A good feature vector associated with an object should be ..
» invariant under scaling
» invariant under rigid motion (rotation and translation)
> tolerant to noise and reasonable deformation
>

should react differently to images from different classes,
producing feature vectors different from class to class

v

use least number of features to design faster and simpler
classification algorithms



Feature Vectors Based on Eigenvalues of Elliptic Operators

We will build feature vectors out of eigenvalues
We think of a shape as a domain Q C R?

We think of a shape as a binary image

Four model problems will be presented

For each, four model features vectors will be studied

vV v v v v Y

We will illustrate feature recognition schemes for synthetic,
and real images and compare results for the various model
problems



The Dirichlet Laplacian as a Model Problem
Let Q ¢ R? be a bounded domain, d > 2. Consider the Dirichlet
(or Fixed Membrane) Problem:

—Au=X\u in Q (1)
u=0 on 90N

Eigenmodes: 0 < A1 < Ap < A3 < -

Eigenfunctions: vy, up, uz,---.

One can characterize these eigenvalues using the Rayleigh-Ritz
Principle:

fQ \V¢|2dx

A < <2
k+1 > fQ d)de

subject to

/gbu;dx:O, ¢ =0 on 0N
Q

fori=1,2,... k.



Some inequalities and stability results:

For Q C R?:
Rayleigh-Faber-Krahn Inequality (1890s, 1920's):
2
7Jo,1
A1 > -
Q|

where jo1 = 2.4048...

Ashbaugh-Benguria (1991) inequality (formerly PPW conjecture,
1956)
)\2 J12

0,1

=2.53873....

>/

Here j11 = 3.83171...These are isoperimetric inequalities:
Equality holds when € is a disk.

A. Melas (1992, 1993) proved stability results for these inequalities
when Q is convex. (These results hold when Q C R9))



The Counting Function and Riesz Means

Theorem (Weyl, 1910/1911)

422/ d K2/d
~ = as k — oo,

2/d 2/
(Cal92]) (LS{d’QD

d/2
here (g = ————~ = vol f the d—Ball.
where Cy fd2+1) volume of the a
One can recast this theorem in terms of the counting function:

N(z) = Z 1= sup k.

A<z A<z

N(z) ~ L(C){d Q292 as z — oo

with L/, = Cq/(2m)7.



The Riesz mean is a “smoothed staircase” function.
By convention, the counting function is sometimes written as

N(z) = (z= )%

k

The reason for this is to parallel the definition of the Riesz mean of

order p > 0
Riz) = 3 (2= M,
k

Here x; = max{0, x} is called the ramp function.

Properties:
(i) .
R,(z)=p /0 (z— )7 N(t)dt.

Ro+5(2) = m /OOO (z— 1) P Ry(t)dt.



Riesz Means, cont'd

Remark: (i) These properties are sometimes referred to as Riesz
iteration or the Aizenman-Lieb procedure. These are
Riemann-Liouville fractional transforms (see the Bateman Project,
Vol. I)

(ii) Formulas rely on Fubini and the definition of the Beta function.

Basic references: (1) Article by Dirk Hundertmark in Barry

Simon's Festschrift (2006); (2) “Typical Means” by
Chandrasekharan & Minakshisundaram (1954).

Ro(z) ~ LS4 1Q| 279/% as z — o0

: | _ F(p+1)
with L7, = )2 T (p1d/211)"



Kac and Berezin-Li-Yau
Heuristic argument: Apply Laplace transform

o0 o0
Z(t) = partition function = Z e Mt = / e " N(p)dp.
k=1 0

One then gets Kac's asymptotic formula (see “Can one hear the
shape of a drum?”, 1966)

€]
)\kt

e S E—
Z 4-7T1.')d/2

oo
k=1

z — oo corresponds to t — 0+
Theorem (Berezin). For p > 1, one has

Ro(z) < Ljlq 19 2492,

Idea of proof: Prove for p =1, then apply Riesz iteration.



Berezin-Li-Yau (Laptev-Weild, Journées EDP, 2000)
Let:

1 .
(&) = ) /Quk(x) e™Cdx.
Clearly
_ 21~ (o2 N2 e
M= [ 1ePlaRds and [ s =1
Therefore
Se-n = X ([ ) loue)a )
P DRSS +

< /R (2 1eP). Y lau(e) e

where Jensen's inequality is used for every individual integral.
Finish with

S OF = Gy [P = oL



Legendre Transform

Definition: The Legendre transform is defined by:

M (w) = ii'g(w z - f(2)).

Basic properties: (i)

f(z) < g(2) = MfHw) = Mg}(w).

[w]
M=), ) = (w = [w]) Muper + DN

1+d/2
zitd/ _ —2/d d wlit2/d

ANec—— 1 =
leiapt =< a2



Inequalities of Li-Yau and Kac

Applying the Legendre Transform to the Berezin inequality (1972)
leads to the

Corollary (Li-Yau inequality, 1983):

k d  Aan2Kl+2/d
D iz

A > .
d+2(c 0¥

i=1
Corollary (Kac, 1966):

€]
Z(t) < (ar 0)d/2

Proof: Apply Laplace transform to Berezin inequality.
Corollary: For0<p<1
Ry(z) < Fpg LSy |Q 219/2,

Remark: Frank, Loss, Weidl (2008) have the best constant F, 4.



Some of the Tools Used to Estimate Eigenvalues
Rayleigh-Ritz Ratio: For f defined on €2 such that f = 0 on 02
fQ |V f|2dx

R(F) = Jo F2dx

Poincaré (1904): For a complete family of functions
g1,82,---,&n, ... vanishing along 02 form

n
6= tig
j=1

This leads to i
Doij=1 i it

R(0) = ZI_] 1 bij titj

where
aj = / Vgi-Vgjdx bjj = / gigjdx.
Q Q
With A = (aj) and B = (bj;), form the equation
lA—2B| =0



Some of the Tools Used to Estimate Eigenvalues

The roots A} < X\, < ... < ), of this equation are such that
)\lé)\av 7)\2§)\/7"‘7)\I1S)\In

Minimax Principle (Fischer, 1905): Formulation preferred by
Finite Difference people
>\k § Mingk max¢65k R(gb)

where S is the k—dimensional linear space generated by

81,82,---,8k
Maximin Principle (Courant): Formulation preferred by

analysts/geometers

Ak < Maxy,_, Ming, 1, R(¢)

where T,_1 is a k — 1 dimensional linear space and ¢ = 0 on 0.



Universal Eigenvalue Bounds
Payne-Pdlya-Weinberger (1956)

4 [1 &
)\k+1 /\k < — E Z )\J and
j=1
Hile-Protter (1981)
K
it
i—1 )\k+]_ - )\,‘ 4
H.C. Yang (1991,/1995)
k k
Z()\k—i-l Z (M1 —
i=1 =1
4

M1 < (T+ E)Xk

Ak41

Ak

<1+4-—



Universal Eigenvalue Bounds

Harrell-Stubbe (1997), Ashbaugh-H., For p > 2

K
2
Z()\k+1 —-A)P < Fp Z Ai(Akgr — AT

i=1 i=1

K
4 _
> (kg1 —X) < g > Ak — A
i—1 i—1

Variational Proof: Test function 4+ "Optimal Cauchy-Schwarz":
o; = xuj — Zjlle ajjuj, where ajj = (xuj, uj), and X = x1, ..., Xq
the coordinate functions.

Commutator Proof (a.k.a. sum rules of quantum mechanics):
Technique pioneered by Harrell-Stubbe, followed by
Levitin-Parnovski, El-Soufi-Harrell-llias, Harrell-H., Harrell-Yolcu.



Commutators

[A,B] = AB — BA

First and Second Commutation:

0
[—A,Xa] = _287xa

[[—A, xa], xa] = =2

Consequence:

(= A7) (ottt} = ([~ el )



Commutators, cont'd
Proof (brief):

Y= A Xy xa) 30 (2 = X)), -8 %]y
J J

Use first commutation formula to get:

2
a2 =4 [ (52

Use second commutation formula to get:

([-A, xa]uj, xa uj) :/ uj2 =
Q

Sumover a =1,...,d to get
>

D (2= )% < % D Az =)
j

J



Monotonicity Principle for Riesz Means
» For p > 2 and z > Ay,
2p _
PR A SRV CERY)
j j

and consequently
Rp(2)
Plas

is a nondecreasing function of z.
» For p <2and z > Aq,

Y (2= N < j,z Az = A5t

and consequently

pd
zPt

is a nondecreasing function of z.



Sum Rules vs Rayleigh-Ritz

>

One can get these from first principles through sum rules
(Harrell-Stubbe, Levitin-Parnovski, Harrell-H.,
El-Soufi-Harrell-llias, Harrell-Stubbe, extensions by
Harrell-Yolcu);

Alternative way via Rayleigh-Ritz: Ashbaugh-H., Colbois,
Ilias-Makhoul, Cheng-Yang, Cheng-Yang-Sun, Wang-Xu, Wau,
Wu-Cao, Jost-Li-Jést-Wang-Xu, etc.

Sum rules + Integral transforms: One can obtain all from the
p = 2 case (for the model problem)

These are particular cases of more general monotonicity
principles for “trace controllable functions” as shown in recent
work by Harrell-Stubbe



What does the monotonicity principle entail?
It leads universal bounds for ratios of eigenvalues which are of

Weyl-type.
» (Harrell-H., 2008) For k > j > 1,

2

_ 4 k\ d

A A<I|1+5) (=) -
k““‘( +d) <J>

case j = 1 (Cheng-Yang, 2007); case j = k (Yang, 91/95)
d
» (Harrell-H., 2008) For k 2ji—§,
4

142 2
_ 1449 N AY
KA < <1+§’> (J)

» Harrell-Stubbe (2009): For k > j,
+ “

L (4
1+4\j/) °

)\k/)\J <




Proof of A\, ;1 bound

Let n be the largest such that A, < z < Ap11, then
Rx(z)=n (22 — 22)\7,,4—)\7%) :
For any integer j and z > )},
Rx(z) > Q(z,)) :=J <22 —2z\ + )\12> .

By monotonicity, for z > z; > A;,

feu)z<x4J><?)%g.

Z

Also, by Cauchy-Schwarz )\72 < )TJZ so

Qz.j) = ((z=X)* + 22 =X



Proof of the A\;,1 bound, cont'd
Combining and choosing z = z; = (1 + %) )TJ one gets

. d
jz22*2

Ryx(z) > > —
(1+9) A+ N)

From monotonicity, one gets

q-
2

Ri(z) > <1 + Z) %Rg(z),

and,

2
N(z) = Ro(z) > (1 n j) L Ri(2)

and therefore,

Ve (w) '

To get the bound statement for A\g41, simply send z — Mgy from
below.



Three Basic Messages

1. (Integral) transforms link various inequalities proved by various
techniques

Yang < Harrell-Stubbe, p > 2
Y \

Kac <« Berezin-Li-Yau, p > 2

They provide a parallel framework to convexity.
2. Sum rules play a key role.

3. By Legendre transform, any bound for a Riesz mean of order

p = 1 which is of Weyl-type can be converted to statements about
ratios of eigenvalues (or ratios of means of eigenvalues) which are
of Weyl-type.



Riesz iteration: p = 2 implies p > 2:

4TI~
d d e 2

With I'(p+ 1) = p ['(p), this simplifies to

k

2 _
Z(Z—Ak)iggp Sz - w0
k

Note: The constant in this inequality is the sharpest possible



p = 2 implies p < 2:
This is a consequence of the “Weighted Reverse Chebyshev
Inequality”:
Let {ax} and {bi} be two real sequences, one of which is

nondecreasing and the other nonincreasing, and let {wy} be a
sequence of nonnegative weights. Then,

m
D W

k=1

NE

m m
Wi akbk < Z Wy ak Z Wi bk.
k=1 k=1

x
Il

1

Ak
(Zi)‘k)+,
by =(z— )\k)j’ffpl with p1 < pa < 2, the conditions of the lemma
are satisfied and one gets:

IR LD AR s
Yo (z— /\k)il_l M Do (z— )\k)iz_l Ak

then, set py = p and pp =2

Make the choices wy = (z — A\k)", ax = and




Basic message, revisited

Berezin-Li-Yau (for p > 2) follows from Harrell-Stubbe, and
semiclassical asymptotic formula.

» For p > 2 and z > Ay,

Rp(2)
Plas

is a nondecreasing function of z.

R
jim 202) _ L5419
Z—00 ZP+§ ’




Harrell-Stubbe + Asymptotic = Kac's inequality
Apply the Laplace transform to both sides of

iz—)\k ii Z—)\k
k=1 dk:

and use ( ) .
Mp+1) e ™k
L(z=M)) = ——Fm
to obtain 5
Z(t) < —3 tZ'(t)
or, after combining,

’

(td/2 Z(t)) <0.

then employ

o dpgy 9
t|—|>r(TJ1+ tm2(n) (47r)d/2'



Harrell-Stubbe + Asymptotic = Kac's inequality

Therefore t7/2Z(t) is a nonincreasing function which saturates
when t — 0:

9]
A=

This is Kac's inequality.



From Berezin-Li-Yau to Kac's

Start with
Ro(A) < LS4 |Q A+l

Apply the Laplace transform to both sides

MZ(t) < L;{d Q|

Mp+1+9)
tpt+l :

o1+
Upon simplification, it obtains

1Q LylaT(p+1+9)

2 < t5 Mp+1)

Using the definition of L;{d leads to Kac's inequality.



Monotonicity + Kac's Asymptotic = Berezin-Li-Yau,
when p > 2:

w20 prd/2
20 > '

Rl ) = Ry(a) (
The Laplace transform of a shifted function

2
L(f(u+ 20)) = e®* <£(f) - / e_t“f(u)d“>
0
Therefore, for each individual term on the LHS, we obtain

L Mp+1
Cllprzo-2) = e (HErD

(20—Ak)
— / - eitﬂupd//b).
0



Monotonicity + Kac's Asymptotic = Berezin-Li-Yau,

when p > 2:
On the RHS, one has

el (p+1+4d/2
(o) - (U

2

_ / e*tuup+d/2d,u>‘

0
We note the appearance of the incomplete  function
X
v(a,x) = / e Muatdpu.

0

Putting these facts together we are led to

. Mo+1) 1
Z elzo—=A) t { s mry (0 +1,(z0 — Ak)+t) } >
k

Ro(20) .+ (T(p+1+d/2) 1
a2 ¢ { mraiz .~ prran
zg+ / to+1+d/ to+1+d/

p+1+d/2,20 t)}



Monotonicity + Kac's Asymptotic = Berezin-Li-Yau,
when p > 2:

We now notice that

00
Z e(ZO_)\k)+t < e®t Z e—)\kt — ezOtZ(t).

k k=1

Therefore, after a little simplification,

r(c 1) d/2 ‘EU(ZO)
-~ @7 > - =7
i d)! Z(t) > 7 + R(t),

where the remainder term R(t) is given by the long expression

#d/2

— —2zpt (Zo—)\k)+t 1 _
R(1) fp+r1t+d2)° Zk: © o+ L (20 =M 1)

td/z RO'(ZO)
M(p+1+dj2) 077

Y(p+1+d/2,20t)

Notice that lim;_oR(t) =0. Sending t — 0, and incorporating
Kac's semiclassical leads to result.



Integral Transforms and Universal Lower Bounds for Riesz

Means

Remember some of the spectral functions we dealt with

» The counting function N(z)
» The Riesz Mean of order p: Riemann-Louiville fractional
transform of N(z)
» The “partition function” Z(t)
» The spectral zeta function
1
Cspec(p) = Z V
—1 7k

k=1

This is the Mellin transform of the Z(t).



A General Setting for New Universal Inequalities
For a nonnegative function f on R, such that

/Ooo f(t) (1 + t_d/2) % < o0

define - e
A= [ e )
and let
G(s) := Wy F(2)}(s), (3)
where
W F(2)}(s) := r(lu) / TR (2 st de

denotes the Weyl transform of order u of the function F(z).
Bateman project:

—st dt

G(s) = /Ooojd/zf(t)t.



Universal Lower Bounds amenable to the above setting:
Theorem (Harrell-H.): For p > 1

1+ p)l(1+d/2) \9/2

LT
R@) > K —e s, ramy M

+d/2
(Z — Al)i .

Here:

u 2d
d pr— ; N .
Jc21/2—1,1J§/2(Jd/271,1)

As usual, j, p denotes the p-th positive zero of the Bessel function
Ja(x).

F14d/2) e ™Mt
Z(t) > Hd ()\1 t)d/2‘

For p > d/2
r1+d/2)f(p—d/2) 1
Hq M) A

This provides correction for the zeta function when p is close to

d/2.

<spec(P) =



Universal Lower Bounds Via Weyl transforms

For F(s) and G(s) as defined above, and related by the Weyl
transform,

> r1+d/2
ZF JI:!,J,/ ! A 26 ().

Note: This inequality is equivalent to the partition function bound
found above.



Work in Progress: The Neumann Case
Forp>1

x
D (2w = Llg1Q 292,
j=1

Z e —pjt 79‘
(4mt)d/2

For p > d/2,

> d/2 Q
Z Fp—d/2) Q]

wa = @) () a2

CHur(p
j=1

For F(s) and G(s) as defined above, and related by the Weyl
transform, and a > 0

Z; Fluj +0) 2 ¢ 47'5; 7 Gla).




From Bethe Sum Rule to a Theorem of Laptev:

Our starting point is the Bethe sum rule (see for example,
Levitin-Parnovski, 2002)

Z (A=) | /Q UkUjeix'édXF = ]5\2,

k

This provides alternative proof of the following result of Laptev
(There are other proofs by L. H., '08, Frank-Laptev-Molchanov,
'09)

Theorem [Laptev, 96]

SN, 2w W@

where fi; = ess sup|u1| and L is the classical constant.



From Bethe Sum Rule to Universal Inequalities:
Proof: Let

ajk(f) = / UkUjeiX{dX

Q

Take j = 1.
Z (k= A1) [ak (€))7 = [¢%.
k
Let z > A1. One can always find an integer N such that
An <z < Ay,
allowing the sum to be split as
2= Z+ >
k=1 k=N+1

We can replace each term in 322 ., (...) by

(z— A1) law(&)*.



From Bethe Sum Rule to Universal Inequalities:
Hence
N

N
Ak = A1) [a(P + (2= A1) (1Z|a1k(£)|2> < >

k=1 k=1

Here we have exploited the completeness of the orthonormal family
{uk}324, noting that

Oo .

> o = [ Jue <P = 1.

k=1 &
Therefore

00 N

o la(@©P =1=) a9

k=N+1 k=1
These identities reduce our inequality to
(2= M), <P+ (2= M) a1 (5)
k

(The statement is true by default for z < A1.)



From Bethe Sum Rule to Universal Inequalities:

One then integrates over a ball B, C R? of radius r. To simplify
the notation we use

|Br| = volume of B, = Cy4 rd,

d
b(B) = [ lePds =5

Our main inequality then reduces to

and

C, rdt2.
pdr

fB, |21 (&)]7d¢

(z— A1),
K |B/|

IBI

By the Plancherel-Parseval |dent|ty

(271T)d /Brlalk(i)zdﬁ < /Q\ul|2yuk|2dx

ess sup]ul\z/ g (x)2dx
Q

= ess sup|up|?.

IN



From Bethe Sum Rule to Universal Inequalities:

Riesz iteration leads to the corollary:
Forp>1

STz M) > Ly a2 (2 - )R (6)

k

We also have the following universal lower bound (H., Trans.
AMS, 2008)

}:@—Ak+_J—EH¥xW2@—AQTW?

where 5 4
Hy = - . ) (7)
J§/2_171J§/2(Jd/2—1,1)

This is a consequence of the Chiti inequality (satisfies Queen Dido

property):
2 < Hylgl A9/,



Work of Melas and corrections to Berezin-Li-Yau

A. Melas (Proc. AMS, 2003) proved the following inequality.

k
d 47T2k1+2/d |Q|

N\ > + My ——-
Z d—{—2(Cd‘Q|)2/d d 1(2)

i=1

k.

Here /() is the “second moment” of Q, while My is a constant
that depends on the dimension d. This is a correction to BLY.
If one applies the Legendre transform to this inequality:

RYas:

Rp(Z) < L/C){d|Q‘ <Z — Mdl(m) y
+

for p > 1.



The Work of Melas

Applying the Laplace transform leads to the following correction of
Kac's inequality

. o il

Z e Nt < €] () (8)

d 2
P (4mt) (47t)9/2

Finally, applying the Mellin transform to this inequality leads to the
following

1 M- d)) o\
Cspec(p) < (47T)d/2 r(p) ‘ | < I(Q)) '

In fact we have the general inequality, as above:
For F(s) and G(s) as related by the Weyl transform, one has

> 1 Q
500 g 16 ()

j=1



Conjectures (For d < 23 see L. Geisinger and T. Weidl)

- 1
D~ FOV) < goyars 191 6(217)
j=1

Here IQP/" replaces My % For instance:

1. For p > d/2,

M(p—d/2) QP9
M) (arm)¥/?

2. Conjecture(s) would follow from a correction to Kac's inequality:

IN

Cspec (p)

t
. Q] - e Q279
e Nt < L .
Z 4 t)d/2
3. These would foIIow from the p > 1 improvement for Riesz

means:

/ 1\t
R,(z) < L7 419 (z - > .
P Q274 ) .



Conjectures

Iteration on dimension for a parallelpiped
Q:/1></2X"-de:

h=[0,n], L=m,; L(l:{l =2/(37), M\ = k2.

Apply Legendre transform:

2 1\%? 1
Z(z—)\k)+§3(z—6> <L§{17T <z—7T2

Apply Legendre, etc.
“Lifting” works for Q = Q1 x 5, etc.

Ake = pik + V.



Conjectures

Do they violate any of the known inequalities? No.
Tested against Faber-Krahn, Li-Yau, Pélya (when the domain tiles

R)

((2p/d) 2ppa _ 1 T(p—d/2) _ (d+2\" ((2p/d) ~2p/a
(4m2)" ¢ §(47r)d () S( d) (am2y

—  Poya
d=2

Conjecture

- Li-Yau

Figure: Upper Bound Estimate for |Q|72%/9 (spec(p)
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Next Lecture:

» Shape Recognition Using Eigenvalues of the Dirichlet
Laplacian

» Finite Difference Schemes for Computing Eigenvalues
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