Shape Recognition Using Eigenvalues of the Laplacian \diamondsuit

 \diamond Lotfi Hermi, University of Arizona

Neuchatel, June 2009 based on work with Mark Ashbaugh, Evans Harrell, M. Ben Rhouma, and M. A. Khabou

Lectures

- 1. Lecture 1: The Dirichlet Laplacian as a Model Problem for Shape Recognition
- 2. Lecture 2: Numerical Schemes and Statistically Recognizing Shape
- 3. Lecture 3: Shape Recognition Using Neumann and Higher Order Eigenvalue Problems

What is shape recognition?

- Shape recognition is a key component of (automated) object recognition, matching, and analysis
- A shape description method generates a feature vector that attempts to uniquely characterize the shape of an object
- This is one of the least developed areas of Pattern Recognition
- A good feature vector associated with an object should be ...
 - invariant under scaling
 - invariant under rigid motion (rotation and translation)
 - tolerant to noise and reasonable deformation
 - should react differently to images from different classes, producing feature vectors different from class to class
 - use least number of features to design faster and simpler classification algorithms

Feature Vectors Based on Eigenvalues of Elliptic Operators

- We will build feature vectors out of eigenvalues
- \blacktriangleright We think of a shape as a domain $\Omega \subset \mathbb{R}^2$
- We think of a shape as a binary image
- Four model problems will be presented
- ► For each, four model features vectors will be studied
- We will illustrate feature recognition schemes for synthetic, and real images and compare results for the various model problems

The Dirichlet Laplacian as a Model Problem

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $d \ge 2$. Consider the Dirichlet (or Fixed Membrane) Problem:

$$-\Delta u = \lambda \ u \quad in \quad \Omega \tag{1}$$
$$u = 0 \quad on \quad \partial \Omega$$

Eigenmodes: $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots$

Eigenfunctions: u_1, u_2, u_3, \cdots .

One can characterize these eigenvalues using the *Rayleigh-Ritz Principle*:

$$\lambda_{k+1} \le \frac{\int_{\Omega} |\nabla \phi|^2 dx}{\int_{\Omega} \phi^2 dx}$$

subject to

$$\int_\Omega \phi \, u_i dx = 0, \qquad \phi = 0 \, \, {
m on} \, \, \partial \Omega$$
 for $i=1,2,\ldots,k.$

Some inequalities and stability results:

For $\Omega \subset \mathbb{R}^2$: Rayleigh-Faber-Krahn Inequality (1890s, 1920's):

$$\lambda_1 \geq \frac{\pi j_{0,1}^2}{|\Omega|}$$

where $j_{0,1} = 2.4048...$

Ashbaugh-Benguria (1991) inequality (formerly PPW conjecture, 1956)

$$\frac{\lambda_2}{\lambda_1} \le \frac{j_{1,1}^2}{j_{0,1}^2} = 2.53873\dots$$

Here $j_{1,1} = 3.83171...$ These are isoperimetric inequalities: Equality holds when Ω is a disk.

A. Melas (1992, 1993) proved stability results for these inequalities when Ω is convex. (These results hold when $\Omega \subset \mathbb{R}^d$.)

The Counting Function and Riesz Means

Theorem (Weyl, 1910/1911)

$$\lambda_k \sim rac{4\pi^2 k^{2/d}}{(\mathcal{C}_d |\Omega|)^{2/d}} = rac{k^{2/d}}{\left(L_{0,d}^{cl} |\Omega|
ight)^{2/d}} ext{ as } k
ightarrow \infty,$$

where $C_d = \frac{\pi^{d/2}}{\Gamma(d/2+1)}$ = volume of the *d*-Ball. One can recast this theorem in terms of the counting function:

$$N(z) = \sum_{\lambda_k \leq z} 1 = \sup_{\lambda_k \leq z} k.$$

$${\it N}(z)\sim {\it L}_{0,d}^{cl}\left|\Omega
ight|z^{d/2}$$
 as $z
ightarrow\infty$

with $L_{0,d}^{cl} = C_d / (2\pi)^d$.

The Riesz mean is a "smoothed staircase" function.

By convention, the counting function is sometimes written as

$$N(z) = \sum_k (z - \lambda_k)^0_+$$

The reason for this is to parallel the definition of the Riesz mean of order $\rho > 0$

$${\cal R}_
ho(z) = \sum_k \left(z-\lambda_k
ight)_+^
ho$$
 .

Here $x_+ = \max\{0, x\}$ is called the *ramp function*.

Properties:

(i)

$$R_{\rho}(z)=\rho\int_0^{\infty}\left(z-t\right)_+^{\rho-1}N(t)dt.$$

(ii)

$$R_{\sigma+\delta}(z) = rac{\Gamma(\sigma+\delta+1)}{\Gamma(\sigma+1)}\int_0^\infty (z-t)_+^{\delta-1}R_\sigma(t)dt.$$

Riesz Means, cont'd

Remark: (i) These properties are sometimes referred to as *Riesz iteration* or the *Aizenman-Lieb procedure*. These are *Riemann-Liouville fractional transforms* (see the Bateman Project, Vol. I)

(ii) Formulas rely on Fubini and the definition of the Beta function.

Basic references: (1) Article by Dirk Hundertmark in Barry Simon's Festschrift (2006); (2) **"Typical Means"** by Chandrasekharan & Minakshisundaram (1954).

$$R_
ho(z)\sim L^{cl}_{
ho,d}\left|\Omega
ight|z^{
ho+d/2}$$
 as $z
ightarrow\infty$
with $L^{cl}_{
ho,d}=rac{\Gamma(
ho+1)}{(4\pi)^{d/2}\,\Gamma(
ho+d/2+1)}.$

Kac and Berezin-Li-Yau

Heuristic argument: Apply Laplace transform

$$Z(t)= ext{ partition function } = \sum_{k=1}^{\infty} e^{-\lambda_k t} = \int_0^{\infty} e^{-t\mu} N(\mu) d\mu.$$

One then gets Kac's asymptotic formula (see "Can one hear the shape of a drum?", 1966)

$$Z(t) = \sum_{k=1}^\infty e^{-\lambda_k t} \sim rac{|\Omega|}{\left(4\pi t
ight)^{d/2}}.$$

 $z
ightarrow \infty$ corresponds to t
ightarrow 0+

Theorem (Berezin). For $\rho \geq 1$, one has

$$R_{
ho}(z) \leq L_{
ho,d}^{cl} |\Omega| |z^{
ho+d/2},$$

Idea of proof: Prove for $\rho = 1$, then apply Riesz iteration.

Berezin-Li-Yau (Laptev-Weild, Journées EDP, 2000) Let:

$$\hat{u}_k(\xi) = \frac{1}{(2\pi)^d} \int_{\Omega} u_k(x) e^{ix\cdot\xi} dx.$$

Clearly

$$\lambda_k = \int_{\mathbb{R}^d} |\xi|^2 |\hat{u}_k(\xi)|^2 d\xi$$
 and $\int_{\mathbb{R}^d} |\hat{u}_k|^2 d\xi = 1$

Therefore

$$\begin{split} \sum_k (z-\lambda_k)_+ &= \sum_k \left(\int_{\mathbb{R}^d} \left(z - |\xi|^2 \right) |\hat{u}_k(\xi)|^2 d\xi \right)_+ \\ &\leq \int_{\mathbb{R}^d} \left(z - |\xi|^2 \right)_+ \sum_k |\hat{u}_k(\xi)|^2 d\xi \end{split}$$

where Jensen's inequality is used for every individual integral. Finish with

$$\sum_{k} |\hat{u}_{k}(\xi)|^{2} = \frac{1}{(2\pi)^{d}} \int_{\Omega} |e^{-ix \cdot \xi}|^{2} dx = \frac{|\Omega|}{(2\pi)^{d}}.$$

Legendre Transform

Definition: The Legendre transform is defined by:

$$\Lambda\{f\}(w) = \sup_{z\geq 0} (w \ z - f(z)).$$

Basic properties: (i)

$$f(z) \leq g(z) \Rightarrow \Lambda\{f\}(w) \geq \Lambda\{g\}(w).$$

(ii)

$$\Lambda \left\{ \sum_{i} (z - \lambda_{i})_{+} \right\} (w) = (w - [w]) \ \lambda_{[w]+1} + \sum_{i=1}^{[w]} \lambda_{i},$$
(iii)

$$\Lambda \left\{ c \frac{z^{1+d/2}}{1+d/2} \right\} = c^{-2/d} \frac{d}{d+2} w^{1+2/d}$$

Inequalities of Li-Yau and Kac

Applying the *Legendre Transform* to the Berezin inequality (1972) leads to the

Corollary (Li-Yau inequality, 1983):

$$\sum_{i=1}^{k} \lambda_i \geq \frac{d}{d+2} \frac{4\pi^2 k^{1+2/d}}{(C_d |\Omega|)^{2/d}}.$$

Corollary (Kac, 1966):

$$Z(t) \leq \frac{|\Omega|}{(4\pi t)^{d/2}}$$

Proof: Apply Laplace transform to Berezin inequality.

Corollary: For $0 < \rho < 1$

$$R_{
ho}(z) \leq F_{
ho,d} L_{
ho,d}^{cl} |\Omega| \ z^{
ho+d/2}.$$

Remark: Frank, Loss, Weidl (2008) have the best constant $F_{\rho,d}$.

Some of the Tools Used to Estimate Eigenvalues

Rayleigh-Ritz Ratio: For f defined on Ω such that f = 0 on $\partial \Omega$

$$R(f) = \frac{\int_{\Omega} |\nabla f|^2 dx}{\int_{\Omega} f^2 dx}$$

Poincaré (1904): For a complete family of functions $g_1, g_2, \ldots, g_n, \ldots$ vanishing along $\partial \Omega$ form

$$\phi = \sum_{j=1}^n t_j g_j$$

This leads to

$$R(\phi) = \frac{\sum_{i,j=1}^{n} a_{ij} t_i t_j}{\sum_{i,j=1}^{n} b_{ij} t_i t_j}$$

where

$$a_{ij} = \int_{\Omega} \nabla g_i \cdot \nabla g_j \, dx \qquad b_{ij} = \int_{\Omega} g_i g_j dx.$$

With $A = (a_{ij})$ and $B = (b_{ij})$, form the equation $\left|A - \lambda B\right| = 0$

Some of the Tools Used to Estimate Eigenvalues

The roots $\lambda_1' \leq \lambda_2' \leq \ldots \leq \lambda_n'$ of this equation are such that

$$\lambda_1 \leq \lambda'_1, \quad , \lambda_2 \leq \lambda'_2, \dots, \lambda_n \leq \lambda'_n$$

Minimax Principle (Fischer, 1905): Formulation preferred by Finite Difference people

$$\lambda_k \leq Min_{S_k} \max_{\phi \in S_k} R(\phi)$$

where S_k is the k-dimensional linear space generated by g_1, g_2, \ldots, g_k **Maximin Principle** (Courant): Formulation preferred by analysts/geometers

$$\lambda_k \leq Max_{T_{k-1}} Min_{\phi \perp T_{k-1}} R(\phi)$$

where T_{k-1} is a k-1 dimensional linear space and $\phi = 0$ on $\partial \Omega$.

Universal Eigenvalue Bounds

Payne-Pólya-Weinberger (1956)

$$\lambda_{k+1} - \lambda_k \leq rac{4}{d} \left(rac{1}{k} \sum_{j=1}^k \lambda_j
ight) \qquad ext{and} \qquad rac{\lambda_{k+1}}{\lambda_k} \leq 1 + rac{4}{d}$$

Hile-Protter (1981)

$$\sum_{i=1}^k \frac{\lambda_i}{\lambda_{k+1} - \lambda_i} \geq \frac{dk}{4}$$

H.C. Yang (1991/1995)

$$\sum_{i=1}^k (\lambda_{k+1} - \lambda_i)^2 \leq rac{4}{d} \sum_{i=1}^k \lambda_i (\lambda_{k+1} - \lambda_i)^2$$
 $\lambda_{k+1} \leq ig(1 + rac{4}{d}ig) \overline{\lambda}_k$

)

Universal Eigenvalue Bounds

Harrell-Stubbe (1997), Ashbaugh-H., For $\rho \geq 2$

$$\sum_{i=1}^k (\lambda_{k+1} - \lambda_i)^{\rho} \leq \frac{2\rho}{d} \sum_{i=1}^k \lambda_i (\lambda_{k+1} - \lambda_i)^{\rho-1}$$

For $\rho \leq 2$

$$\sum_{i=1}^k (\lambda_{k+1}-\lambda_i)^
ho \leq rac{4}{d} \sum_{i=1}^k \lambda_i (\lambda_{k+1}-\lambda_i)^{
ho-1}$$

Variational Proof: Test function + "Optimal Cauchy-Schwarz": $\phi_i = xu_i - \sum_{j=1}^k \alpha_{ij}u_j$, where $\alpha_{ij} = \langle xu_i, u_j \rangle$, and $x = x_1, \ldots, x_d$ the coordinate functions.

Commutator Proof (a.k.a. sum rules of quantum mechanics): Technique pioneered by Harrell-Stubbe, followed by Levitin-Parnovski, El-Soufi-Harrell-Ilias, Harrell-H., Harrell-Yolcu.

Commutators

$$[A,B] = AB - BA$$

First and Second Commutation:

$$[-\Delta, x_{\alpha}] = -2\frac{\partial}{\partial x_{\alpha}}$$

$$[[-\Delta, x_{\alpha}], x_{\alpha}] = -2$$

Consequence:

$$(\lambda_m - \lambda_j) \langle x_\alpha u_j, u_m \rangle = \langle [-\Delta, x_\alpha] u_j, u_m \rangle$$

Commutators, cont'd

Proof (brief):

$$\sum_{j} \left(z-\lambda_{j}
ight)_{+}^{2} \left\langle \left[-\Delta,x_{lpha}
ight] u_{j},x_{lpha}u_{j}
ight
angle \leq \sum_{j} \left(z-\lambda_{j}
ight)_{+} \|\left[-\Delta,x_{lpha}
ight] u_{j}\|^{2}$$

Use first commutation formula to get:

$$\|[-\Delta, x_{\alpha}]u_{j}\|^{2} = 4 \int_{\Omega} \left(\frac{\partial u_{j}}{\partial x_{\alpha}}\right)^{2}$$

Use second commutation formula to get:

$$\langle [-\Delta, x_{lpha}] u_j, x_{lpha} u_j
angle = \int_{\Omega} u_j^2 = 1$$

Sum over $\alpha = 1, \ldots, d$ to get

$$\sum_j (z-\lambda_j)_+^2 \leq rac{4}{d} \sum_j \lambda_j (z-\lambda_j)_+$$

Monotonicity Principle for Riesz Means

► For
$$\rho \ge 2$$
 and $z \ge \lambda_1$,
$$\sum_j (z - \lambda_j)_+^{\rho} \le \frac{2\rho}{d} \sum_j \lambda_j (z - \lambda_j)_+^{\rho-1}$$

and consequently

$$rac{R_{
ho}(z)}{z^{
ho+rac{d}{2}}}$$

is a nondecreasing function of z.

For
$$\rho \leq 2$$
 and $z \geq \lambda_1$,

$$\sum_j (z-\lambda_j)_+^
ho \leq rac{4}{d}\sum_j \lambda_j (z-\lambda_j)_+^{
ho-1}$$

and consequently

$$\frac{R_{\rho}(z)}{z^{\rho+\frac{\rho d}{4}}}$$

is a nondecreasing function of z.

Sum Rules vs Rayleigh-Ritz

- One can get these from first principles through sum rules (Harrell-Stubbe, Levitin-Parnovski, Harrell-H., El-Soufi-Harrell-Ilias, Harrell-Stubbe, extensions by Harrell-Yolcu);
- Alternative way via Rayleigh-Ritz: Ashbaugh-H., Colbois, Ilias-Makhoul, Cheng-Yang, Cheng-Yang-Sun, Wang-Xu, Wu, Wu-Cao, Jöst-Li-Jöst-Wang-Xu, etc.
- Sum rules + Integral transforms: One can obtain all from the $\rho = 2$ case (for the model problem)
- These are particular cases of more general monotonicity principles for "trace controllable functions" as shown in recent work by Harrell-Stubbe

What does the monotonicity principle entail?

It leads universal bounds for ratios of eigenvalues which are of Weyl-type.

(Harrell-H., 2008) For k ≥ j ≥ 1,

$$\lambda_{k+1}/\overline{\lambda_j} \le \left(1 + \frac{4}{d}\right) \left(\frac{k}{j}\right)^{\frac{2}{d}}.$$
case j = 1 (Cheng-Yang, 2007); case j = k (Yang, 91/95)
 (Harrell-H., 2008) For k ≥ j $\frac{1+\frac{d}{2}}{1+\frac{d}{4}}$,

$$\overline{\lambda_k}/\overline{\lambda_j} \le 2 \left(\frac{1+\frac{d}{4}}{1+\frac{d}{2}}\right)^{1+\frac{2}{d}} \left(\frac{k}{j}\right)^{\frac{2}{d}}.$$

• Harrell-Stubbe (2009): For $k \ge j$,

$$\overline{\lambda_k}/\overline{\lambda_j} \leq rac{1+rac{d}{4}}{1+rac{d}{2}} \left(rac{k}{j}
ight)^{rac{2}{d}}.$$

Proof of λ_{k+1} bound

Let *n* be the largest such that $\lambda_n \leq z < \lambda_{n+1}$, then

$$R_2(z) = n\left(z^2 - 2z\overline{\lambda_n} + \overline{\lambda_n^2}\right).$$

For any integer j and $z \ge \lambda_j$,

$$R_2(z) \geq Q(z,j) := j\left(z^2 - 2z\overline{\lambda_j} + \overline{\lambda_j^2}\right).$$

By monotonicity, for $z \ge z_j \ge \lambda_j$,

$$R_2(z) \ge Q(z_j,j) \left(rac{z}{z_j}
ight)^{2+rac{d}{2}}$$

Also, by Cauchy-Schwarz $\overline{\lambda_j}^2 \leq \overline{\lambda_j^2}$, so

$$Q(z,j) = j\left(\left(z - \overline{\lambda_j}\right)^2 + \overline{\lambda_j^2} - \overline{\lambda_j}^2\right)$$
$$\geq j\left(z - \overline{\lambda_j}\right)^2.$$

Proof of the λ_{k+1} bound, cont'd

Combining and choosing $z = z_j = \left(1 + \frac{4}{d}\right) \overline{\lambda_j}$, one gets

$$R_2(z) \geq rac{jz^{2+rac{d}{2}}}{\left(1+rac{d}{4}
ight)^2\left(\left(1+rac{4}{d}
ight)\overline{\lambda_j}
ight)^rac{d}{2}}$$

From monotonicity, one gets

$$R_1(z) \ge \left(1+rac{d}{4}
ight)rac{1}{z}R_2(z),$$

and,

$$N(z)=R_0(z)\geq \left(1+\frac{d}{4}\right)^2\frac{1}{z^2}R_2(z)$$

and therefore,

$$N(z) \ge j\left(rac{z}{\left(1+rac{4}{d}
ight)\overline{\lambda_{j}}}
ight)^{rac{d}{2}}$$

To get the bound statement for λ_{k+1} , simply send $z \rightarrow \lambda_{k+1}$ from below.

Three Basic Messages

1. (Integral) transforms link various inequalities proved by various techniques

$$\begin{array}{lll} {\sf Yang} & \Leftrightarrow & {\sf Harrell-Stubbe,} \ \rho \geq 2 \\ & \downarrow & & \downarrow \\ {\sf Kac} & \Leftrightarrow & {\sf Berezin-Li-Yau,} \ \rho \geq 2 \end{array}$$

They provide a parallel framework to convexity.

2. Sum rules play a key role.

3. By Legendre transform, any bound for a Riesz mean of order $\rho=1$ which is of Weyl-type can be converted to statements about ratios of eigenvalues (or ratios of means of eigenvalues) which are of Weyl-type.

Riesz iteration: $\rho = 2$ implies $\rho > 2$:

$$\sum_{k} (z - \lambda_k)_+^2 \leq \frac{4}{d} \sum_{k} \lambda_k (z - \lambda_k)_+,$$

Therefore, for $t \leq z$:

$$\sum_k \left(z-\lambda_k-t
ight)_+^2 \leq rac{4}{d}\sum_k \lambda_k \left(z-\lambda_k-t
ight)_+.$$

Multiply both sides by $t^{
ho-3}$, and then integrate between 0 and ∞ .

$$\sum_{k} (z - \lambda_k)_+^{\rho} \leq \frac{4}{d} \frac{\Gamma(\rho + 1)\Gamma(2)}{\Gamma(\rho)\Gamma(3)} \sum_{k} \lambda_k (z - \lambda_k)_+^{\rho - 1}$$

With $\Gamma(\rho + 1) = \rho \ \Gamma(\rho)$, this simplifies to

$$\sum_k (z-\lambda_k)_+^
ho \leq rac{2
ho}{d} \; \sum_k \lambda_k \, (z-\lambda_k)_+^{
ho-1} \, ,$$

Note: The constant in this inequality is the sharpest possible.

$\rho = 2$ implies $\rho < 2$:

This is a consequence of the "Weighted Reverse Chebyshev Inequality":

Let $\{a_k\}$ and $\{b_k\}$ be two real sequences, one of which is nondecreasing and the other nonincreasing, and let $\{w_k\}$ be a sequence of nonnegative weights. Then,

$$\sum_{k=1}^{m} w_k \sum_{k=1}^{m} w_k a_k b_k \leq \sum_{k=1}^{m} w_k a_k \sum_{k=1}^{m} w_k b_k.$$

Make the choices $w_k = (z - \lambda_k)_+^{\rho_1}$, $a_k = \frac{\lambda_k}{(z - \lambda_k)_+}$, and $b_k = (z - \lambda_k)_+^{\rho_2 - \rho_1}$ with $\rho_1 \le \rho_2 \le 2$, the conditions of the lemma are satisfied and one gets:

$$\frac{\sum_{k} (z-\lambda_k)_+^{\rho_1}}{\sum_{k} (z-\lambda_k)_+^{\rho_1-1} \lambda_k} \leq \frac{\sum_{k} (z-\lambda_k)_+^{\rho_2}}{\sum_{k} (z-\lambda_k)_+^{\rho_2-1} \lambda_k}.$$

then, set $ho_1=
ho$ and $ho_2=2$

Basic message, revisited

Berezin-Li-Yau (for $\rho \ge 2$) follows from Harrell-Stubbe, and semiclassical asymptotic formula.

For
$$\rho \geq 2$$
 and $z \geq \lambda_1$,

►

$$rac{R_{
ho}(z)}{z^{
ho+rac{d}{2}}}$$

is a nondecreasing function of z.

$$\lim_{z\to\infty}\frac{R_{\rho}(z)}{z^{\rho+\frac{d}{2}}}=L^{cl}_{\rho,d}\left|\Omega\right|$$

Harrell-Stubbe + Asymptotic \Rightarrow Kac's inequality

Apply the Laplace transform to both sides of

$$\sum_{k=1}^{\infty} (z-\lambda_k)_+^2 \leq \frac{4}{d} \sum_{k=1}^{\infty} \lambda_k (z-\lambda_k)_+,$$

and use

$$\mathcal{L}\left((z-\lambda_k)_+^{\rho}\right)=rac{\Gamma(
ho+1)\ e^{-\lambda_k\ t}}{t^{
ho+1}}.$$

to obtain

$$Z(t) \leq -\frac{2}{d} t Z'(t)$$

or, after combining,

$$\left(t^{d/2}\,Z(t)\right)'\leq 0.$$

then employ

$$\lim_{t o 0+} \; t^{d/2} Z(t) = rac{|\Omega|}{(4\pi)^{d/2}}.$$

Harrell-Stubbe + Asymptotic \Rightarrow Kac's inequality

Therefore $t^{d/2}Z(t)$ is a nonincreasing function which saturates when $t \to 0$:

$$Z(t) \leq rac{|\Omega|}{\left(4\pi t
ight)^{d/2}}$$

This is Kac's inequality.

From Berezin-Li-Yau to Kac's

Start with

$$R_{
ho}(\lambda) \leq L_{
ho,d}^{cl} \left|\Omega\right| \lambda^{
ho+d/2}$$

Apply the Laplace transform to both sides

$$\frac{\Gamma(\rho+1)}{t^{\rho+1}}Z(t) \leq L_{\rho,d}^{cl} \left|\Omega\right| \frac{\Gamma(\rho+1+\frac{d}{2})}{t^{\rho+1+\frac{d}{2}}}.$$

Upon simplification, it obtains

$$Z(t) \leq rac{|\Omega|}{t^{rac{d}{2}}} \, rac{L^{cl}_{
ho,d} \, \Gamma(
ho+1+rac{d}{2})}{\Gamma(
ho+1)}.$$

Using the definition of $L^{cl}_{\rho,d}$ leads to Kac's inequality.

Monotonicity + Kac's Asymptotic \Rightarrow Berezin-Li-Yau, when $\rho \ge 2$:

$$R_
ho(\mu+z_0)\geq R_
ho(z_0)\,\left(rac{\mu+z_0}{z_0}
ight)^{
ho+d/2}$$

.

The Laplace transform of a shifted function

$$\mathcal{L}\left(f(\mu+z_0)\right)=e^{z_0\,t}\left(\mathcal{L}(f)-\int_0^{z_0}e^{-t\mu}f(\mu)d\mu\right)$$

Therefore, for each individual term on the LHS, we obtain

$$\begin{aligned} \mathcal{L}\left((\mu+z_0-\lambda_k)_+^\rho\right) &= e^{(z_0-\lambda_k)_+t}\Big(\frac{\Gamma(\rho+1)}{t^{\rho+1}} \\ &- \int_0^{(z_0-\lambda_k)_+} e^{-t\mu}\mu^\rho d\mu\Big). \end{aligned}$$

Monotonicity + Kac's Asymptotic \Rightarrow Berezin-Li-Yau, when $\rho \ge 2$:

On the RHS, one has

$$\mathcal{L}\left((\mu+z_0)^{\rho+d/2}\right) = e^{z_0 t} \left(\frac{\Gamma(\rho+1+d/2)}{t^{\rho+1+d/2}} - \int_0^{z_0} e^{-t\mu} \mu^{\rho+d/2} d\mu\right).$$

We note the appearance of the incomplete γ function

$$\gamma(a,x)=\int_0^x e^{-\mu}\mu^{a-1}d\mu.$$

Putting these facts together we are led to

$$\sum_{k} \qquad e^{(z_{0}-\lambda_{k})_{+}t} \left\{ \frac{\Gamma(\sigma+1)}{t^{\sigma+1}} - \frac{1}{t^{\rho+1}}\gamma\left(\sigma+1,(z_{0}-\lambda_{k})_{+}t\right) \right\} \geq \\ \qquad \frac{R_{\sigma}(z_{0})}{z_{0}^{\rho+d/2}}e^{z_{0}t} \left\{ \frac{\Gamma(\rho+1+d/2)}{t^{\rho+1+d/2}} - \frac{1}{t^{\rho+1+d/2}}\gamma(\rho+1+d/2,z_{0}t) \right\}.$$

Monotonicity + Kac's Asymptotic \Rightarrow Berezin-Li-Yau, when $\rho \ge 2$:

We now notice that

$$\sum_{k} e^{(z_0 - \lambda_k)_+ t} \leq e^{z_0 t} \sum_{k=1}^{\infty} e^{-\lambda_k t} = e^{z_0 t} Z(t).$$

Therefore, after a little simplification,

$$rac{ \Gamma(\sigma+1)}{ \Gamma(
ho+1+d/2)} \, t^{d/2} Z(t) \geq rac{ R_\sigma(z_0)}{z_0^{
ho+d/2}} + \mathcal{R}(t),$$

where the remainder term $\mathcal{R}(t)$ is given by the long expression

$$\begin{aligned} \mathcal{R}(t) &= \frac{t^{d/2}}{\Gamma(\rho+1+d/2)} e^{-z_0 t} \sum_k e^{(z_0-\lambda_k)_+ t} \gamma(\sigma+1,(z_0-\lambda_k)_+ t) \\ &- \frac{t^{d/2}}{\Gamma(\rho+1+d/2)} \frac{R_{\sigma}(z_0)}{z_0^{\rho+d/2}} \gamma(\rho+1+d/2,z_0 t) \end{aligned}$$

Notice that $\lim_{t\to 0} \mathcal{R}(t) = 0$. Sending $t \to 0$, and incorporating Kac's semiclassical leads to result.

Integral Transforms and Universal Lower Bounds for Riesz Means

Remember some of the spectral functions we dealt with

- The counting function N(z)
- The Riesz Mean of order ρ: Riemann-Louiville fractional transform of N(z)
- The "partition function" Z(t)
- The spectral zeta function

$$\zeta_{spec}(
ho) = \sum_{k=1}^{\infty} rac{1}{\lambda_k^{
ho}}$$

This is the Mellin transform of the Z(t).

A General Setting for New Universal Inequalities

For a nonnegative function f on \mathbb{R}_+ such that

$$\int_0^\infty f(t) \left(1 + t^{-d/2}\right) \frac{dt}{t} < \infty$$

define

$$F(s) := \int_0^\infty e^{-st} f(t) \frac{dt}{t}$$
(2)

and let

$$G(s) := \mathcal{W}_{d/2}\{F(z)\}(s), \tag{3}$$

where

$$\mathcal{W}_{\mu}{F(z)}(s) := rac{1}{\Gamma(\mu)} \int_{s}^{\infty} F(z) \left(z-s\right)^{\mu-1} dz$$

denotes the Weyl transform of order μ of the function F(z). Bateman project:

$$G(s) = \int_0^\infty \frac{e^{-st}}{t^{d/2}} f(t) \frac{dt}{t}.$$

Universal Lower Bounds amenable to the above setting: Theorem (Harrell-H.): For $\rho \ge 1$

$${R_
ho}(z) \ge H_d^{-1} \; rac{\Gamma(1+
ho)\Gamma(1+d/2)}{\Gamma(1+
ho+d/2)} \; \lambda_1^{-d/2} \left(z-\lambda_1
ight)_+^{
ho+d/2}$$

٠

Here:

$$H_d = \frac{2 \ d}{j_{d/2-1,1}^2 J_{d/2}^2 (j_{d/2-1,1})}.$$

As usual, $j_{\alpha,p}$ denotes the *p*-th positive zero of the Bessel function $J_{\alpha}(x)$.

$$Z(t) \geq rac{\Gamma(1+d/2)}{H_d} \, rac{e^{-\lambda_1 t}}{(\lambda_1 \, t)^{d/2}}.$$

For $\rho > d/2$

$$\zeta_{spec}(
ho) \geq rac{\Gamma(1+d/2)}{H_d} \, rac{\Gamma(
ho-d/2)}{\Gamma(
ho)} \, rac{1}{\lambda_1^
ho}.$$

This provides correction for the zeta function when ρ is close to d/2.

Universal Lower Bounds Via Weyl transforms

For F(s) and G(s) as defined above, and related by the Weyl transform,

$$\sum_{j=1}^{\infty} F(\lambda_j) \geq \frac{\Gamma(1+d/2)}{H_d} \lambda_1^{-d/2} G(\lambda_1).$$

Note: This inequality is equivalent to the partition function bound found above.

Work in Progress: The Neumann Case For $\rho \ge 1$ $\sum_{i=1}^{\infty} (z - \mu_j)_+^{\rho} \ge L_{\rho,d}^{cl} |\Omega| z^{\rho+d/2}.$

$$\sum_{j=1}^{\infty} e^{-\mu_j t} \geq \frac{|\Omega|}{(4\pi t)^{d/2}}$$

For
$$\rho > d/2$$
,

$$\zeta_{Hur}(\rho) = \sum_{j=1}^{\infty} \frac{1}{(\mu_j + \alpha)^{\rho}} \geq \frac{\Gamma(\rho - d/2)}{(4\pi)^{d/2} \Gamma(\rho)} \frac{|\Omega|}{\alpha^{\rho - d/2}}.$$

For F(s) and G(s) as defined above, and related by the Weyl transform, and $\alpha > 0$

$$\sum_{j=1}^{\infty} F(\mu_j + \alpha) \geq \frac{|\Omega|}{(4\pi)^{d/2}} \ \mathcal{G}(\alpha).$$

From Bethe Sum Rule to a Theorem of Laptev:

Our starting point is the Bethe sum rule (see for example, Levitin-Parnovski, 2002)

$$\sum_{k} (\lambda_k - \lambda_j) | \int_{\Omega} u_k u_j e^{i x \cdot \xi} dx |^2 = |\xi|^2.$$

This provides alternative proof of the following result of Laptev (There are other proofs by L. H., '08, Frank-Laptev-Molchanov, '09)

Theorem [Laptev, 96]

$$\sum_{j} (z - \lambda_j)_+ \ge L_{1,d}^{cl} \, \tilde{u}_1^{-2} \, (z - \lambda_1)_+^{1+d/2} \,. \tag{4}$$

where $\tilde{u}_1 = \text{ess sup}|u_1|$ and $L_{1,d}^{cl}$ is the classical constant.

From Bethe Sum Rule to Universal Inequalities: Proof: Let

$$a_{jk}(\xi) = \int_{\Omega} u_k u_j e^{ix \cdot \xi} dx$$

Take j = 1. $\sum_k \left(\lambda_k - \lambda_1\right) |a_{1k}(\xi)|^2 = |\xi|^2.$

Let $z > \lambda_1$. One can always find an integer N such that

$$\lambda_N < z \leq \lambda_{N+1},$$

allowing the sum to be split as

$$\sum_{k} = \sum_{k=1}^{N} + \sum_{k=N+1}^{\infty}$$

We can replace each term in $\sum_{k=N+1}^{\infty} (\dots)$ by

$$(z - \lambda_1) |a_{1k}(\xi)|^2$$
.

From Bethe Sum Rule to Universal Inequalities: Hence

$$\sum_{k=1}^{N} (\lambda_k - \lambda_1) ||\mathbf{a}_{1k}(\xi)|^2 + (z - \lambda_1) \left(1 - \sum_{k=1}^{N} |\mathbf{a}_{1k}(\xi)|^2\right) \le |\xi|^2.$$

Here we have exploited the completeness of the orthonormal family $\{u_k\}_{k=1}^{\infty}$, noting that

$$\sum_{k=1}^{\infty} |a_{1k}(\xi)|^2 = \int_{\Omega} |u_1 e^{i x \cdot \xi}|^2 = 1.$$

Therefore

$$\sum_{k=N+1}^{\infty} |a_{1k}(\xi)|^2 = 1 - \sum_{k=1}^{N} |a_{1k}(\xi)|^2.$$

These identities reduce our inequality to

$$(z - \lambda_1)_+ \le |\xi|^2 + \sum_k (z - \lambda_k)_+ |a_{1k}(\xi)|^2.$$
 (5)

(The statement is true by default for $z \leq \lambda_1$.)

From Bethe Sum Rule to Universal Inequalities:

One then integrates over a ball $B_r \subset \mathbb{R}^d$ of radius r. To simplify the notation we use

$$|B_r|$$
 = volume of $B_r = C_d r^d$,

and

$$I_2(B_r) = \int_{B_r} |\xi|^2 d\xi = \frac{d}{d+2} C_d r^{d+2}.$$

Our main inequality then reduces to

$$(z-\lambda_1)_+ \leq \frac{l_2(B_r)}{|B_r|} + \sum_k (z-\lambda_k)_+ \frac{\int_{B_r} |a_{1k}(\xi)|^2 d\xi}{|B_r|}.$$

By the Plancherel-Parseval identity

$$\begin{aligned} \frac{1}{(2\pi)^d} \int_{B_r} |a_{1k}(\xi)|^2 d\xi &\leq \int_{\Omega} |u_1|^2 |u_k|^2 dx \\ &\leq \operatorname{ess sup} |u_1|^2 \int_{\Omega} |u_k(x)|^2 dx \\ &= \operatorname{ess sup} |u_1|^2. \end{aligned}$$

From Bethe Sum Rule to Universal Inequalities:

Riesz iteration leads to the corollary: For $\rho \ge 1$

$$\sum_{k} (z - \lambda_k)_+^{\rho} \ge L_{\rho,d}^{cl} \, \tilde{u}_1^{-2} \, (z - \lambda_1)_+^{\rho+d/2} \,. \tag{6}$$

We also have the following *universal lower bound (H., Trans. AMS, 2008)*

$$\sum_k (z-\lambda_k)_+ \geq rac{2}{d+2} H_d^{-1} \lambda_1^{-d/2} \ (z-\lambda_1)_+^{1+d/2}$$

where

$$H_d = \frac{2 d}{j_{d/2-1,1}^2 J_{d/2}^2 (j_{d/2-1,1})}.$$
 (7)

•

This is a consequence of the Chiti inequality (satisfies Queen Dido property):

$$\tilde{u}_1^2 \leq H_d L_{0,d}^{cl} \lambda_1^{d/2}.$$

Work of Melas and corrections to Berezin-Li-Yau

A. Melas (Proc. AMS, 2003) proved the following inequality.

$$\sum_{i=1}^k \lambda_i \geq \frac{d}{d+2} \frac{4\pi^2 k^{1+2/d}}{(C_d |\Omega|)^{2/d}} + M_d \frac{|\Omega|}{I(\Omega)} k.$$

Here $I(\Omega)$ is the "second moment" of Ω , while M_d is a constant that depends on the dimension d. This is a correction to BLY. If one applies the Legendre transform to this inequality:

$$\mathcal{R}_{
ho}(z) \leq L^{cl}_{
ho,d} |\Omega| \left(z - \mathcal{M}_d rac{|\Omega|}{I(\Omega)}
ight)^{
ho + rac{d}{2}}_+,$$

for $\rho \geq 1$.

The Work of Melas

Applying the Laplace transform leads to the following correction of Kac's inequality

$$\sum_{i=1}^{\infty} e^{-\lambda_i t} \leq \frac{|\Omega|}{(4\pi t)^{d/2}} e^{-M_d} \frac{|\Omega|}{I(\Omega)}^t.$$
(8)

Finally, applying the Mellin transform to this inequality leads to the following

$$\zeta_{spec}(\rho) \leq \frac{1}{(4\pi)^{d/2}} \frac{\Gamma(\rho - d/2)}{\Gamma(\rho)} \left|\Omega\right| \left(M_d \frac{\left|\Omega\right|}{I(\Omega)}\right)^{\frac{d}{2} - \rho}$$

In fact we have the general inequality, as above: For F(s) and G(s) as related by the Weyl transform, one has

$$\sum_{j=1}^{\infty} F(\lambda_j) \leq \frac{1}{(4\pi)^{d/2}} |\Omega| G\left(M_d \frac{|\Omega|}{I(\Omega)}\right).$$

Conjectures (For $d \leq 23$ see L. Geisinger and T. Weidl)

$$\sum_{j=1}^{\infty} F(\lambda_j) \leq \frac{1}{(4\pi)^{d/2}} \left| \Omega \right| G(|\Omega|^{-2/d})$$

Here $\frac{1}{|\Omega|^{2/d}}$ replaces $M_d \frac{|\Omega|}{l(\Omega)}$. For instance: 1. For $\rho > d/2$,

$$\zeta_{ ext{spec}}(
ho) \leq rac{\Gamma(
ho-d/2)}{\Gamma(
ho)} \; rac{|\Omega|^{2
ho/d}}{(4\pi)^{d/2}} \, .$$

2. Conjecture(s) would follow from a correction to Kac's inequality:

$$\sum_{i=1}^{\infty} e^{-\lambda_i t} \leq rac{|\Omega|}{\left(4\pi t
ight)^{d/2}} e^{-rac{t}{|\Omega|^{2/d}}}$$

3. These would follow from the $\rho \geq 1$ improvement for Riesz means:

$${\sf R}_
ho(z) \leq L^{cl}_{
ho,d} |\Omega| \left(z-rac{1}{|\Omega|^{2/d}}
ight)^{
ho+rac{a}{2}}_+$$

Conjectures

Iteration on dimension for a parallelpiped

$$\Omega = l_1 \times l_2 \times \dots \times l_d :$$

$$l_1 = [0, \pi], \ L = \pi; \ L_{1,1}^{cl} = 2/(3\pi), \ \lambda_k = k^2.$$

$$\sum_{k=1}^n k^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \ge \frac{n^3}{3} + \frac{n}{6}$$

Apply Legendre transform:

$$\sum (z - \lambda_k)_+ \leq rac{2}{3} \left(z - rac{1}{6}
ight)^{3/2} < L_{1,1}^{cl} \pi \left(z - rac{1}{\pi^2}
ight)^{3/2}$$

Apply Legendre, etc. "Lifting" works for $\Omega=\Omega_1\times\Omega_2,$ etc.

$$\lambda_{k\ell} = \mu_k + \nu_\ell.$$

Conjectures

Do they violate any of the known inequalities? No. Tested against Faber-Krahn, Li-Yau, Pólya (when the domain tiles \mathbb{R}^d)

$$\frac{\zeta(2\rho/d)}{(4\pi^2)^{\rho}} \ C_d^{2\rho/d} \le \frac{1}{(4\pi)^d} \ \frac{\Gamma(\rho - d/2)}{\Gamma(\rho)} \le \left(\frac{d+2}{d}\right)^{\rho} \ \frac{\zeta(2\rho/d)}{(4\pi^2)^{\rho}} \ C_d^{2\rho/d}.$$

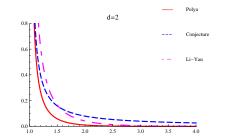


Figure: Upper Bound Estimate for $|\Omega|^{-2\rho/d} \zeta_{spec}(\rho)$

Some References:

- M. S. Ashbaugh, The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H. C. Yang, in Spectral and inverse spectral theory (Goa, 2000), Proc. Indian Acad. Sci. Math. Sci. 112 (2002) 3–30.
- M. S. Ashbaugh and L. Hermi, A unified approach to universal inequalities for eigenvalues of elliptic operators, Pacific J. Math. 217 (2004), 201-220.
- Q.-M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann. 337 (2007) 159-175.
- A. El Soufi, E. M. Harrell II, and S. Ilias, Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds, Trans. Amer. Math. Soc. 361 (2009), 2337-2350.
- E. M. Harrell and L. Hermi, On Riesz Means of Eigenvalues, http://arxiv.org/abs/0712.4088
- E. M. Harrell and L. Hermi, Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues, J. Funct. Anal. 254 (2008), 3173-3191.
- E. M. Harrell and J. Stubbe, On trace identities and universal eigenvalue estimates for some partial differential operators, Trans. Amer. Math. Soc. 349 (1997) 1797–1809.

Next Lecture:

- Shape Recognition Using Eigenvalues of the Dirichlet Laplacian
- Finite Difference Schemes for Computing Eigenvalues

Merci!