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Summary of Today's Session:
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Properties of Feature Vectors
Established Techniques for Shape Recognition
Properties of the Dirichlet Laplacian

Three Numerical Finite Difference Models for the Dirichlet
Problem

Other Methods
Algorithm
Results

Using the Spectrum to Recognize Shape: Negative and
Positive Answers

Minimax Principle and the Numerical Schemes



Properties of Feature Vectors

Recall ..

A good feature vector associated with an object should be ..

|

>
>
>

invariant under scaling
invariant under rigid motion (rotation and translation)
tolerant to noise and reasonable deformation

should react differently to images from different classes,
producing feature vectors different from class to class

use least number of features to design faster and simpler
classification algorithms



Established Techniques for Shape Recognition

» boundary methods vs global methods

» Shape measures or descriptors: circularity, rectangularity,
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ellipticity, triangularity, etc.

Topological tools

moments

Fourier descriptors/wavelet decomposition

graph theoretical approach



Dirichlet Eigenvalue Problem

Key properties

» Eigenvalues are invariant under rigid motion (translation,

rotation)
» Domain monotonicity: If Q1 C Qo, then Ax(21) > Ae(Q2).
A (Q
> Fora >0, \(a Q) = ka(2 )

» Scale Invariance: i‘:((zg)) — ;‘:1((%))

» All sorts of universal constraints on the eigenvalues



Feature Vectors

For a binary image assuming the shape of €2, consider extracting 4
sets of features. Note that n counts the number of features.
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Here di < db,... < d, are the first n e-values of a disk.
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(F4 scales down the Weyl growth of the eigenvalues.)




Three Numerical Finite Difference Models for the Dirichlet
Problem

Let h > 0. Pixelize the plane into lattice points (ih, jh), with i,
integers. Let €y is a square grid covering €,

02y,: pixels through which 0Q passes,and N, is the number of
pixels that cover 2.




Finite Difference Schemes
5-Point Finite Difference Approximation:

Py, Fu

T ox? + Oy?
Replace A with 5-point finite difference approximation Ay defined by:

ulx+ h)+u(x—hy)+ulx,y —h)+u(x,y + h) —du(x,y)

Au

Apu =

h2



Finite Difference Models for the Dirichlet Problem, cont’d
With uj; denoting the value of u at a lattice point (ih, jh), the

discretization takes the form:

1
(Apu); ;= ﬁ(ui—f—l,j + Ujj1 + Uim1j + Ui o1 — buj)

Symbolically, we write it in the form:

1

1

Ay

The eigenvalue problem is replaced by a matrix eigenvalue problem
A U=X"U in Q, (1)
U=0 on 09Q

Eigenmodes: 0 < \f < \J < )\g <. <L )\’,(,h
What we know: A — A, = O(h?)



Finite Difference Models for the Dirichlet Problem, cont’d

G. E. Forsythe (1953/4): There exists v1,72,...,Vk, - - -, €tc, such
that
A< A\ — yh? + o(h?)

the v,'s cannot be computed, but are positive when £ is convex.
In fact, we have the following (H. B. Keller, '65):

Theorem: If 7,(¢(P)) := (A — Ap)¢(P) denotes the local
truncation error, for a given function ¢, and point P € €, then for
each )\ eigenvalue of the continuous problem, there exists A",
eigenvalue of the difference problem, such that

(|7 (uk)ll2

Ak — M| <
[l ukl|2



Finite Difference Schemes: First Modification, cont'd

Modification 1: Pdlya (1952): Generalized eigenvalue problem.
One can think of the discretized problem as:

[,,'J' u=2N 'R,‘j u.
with

1
Liju= 15 (Uir1j+ vij1 + Ui + tij-1 — 4 uj),

and Rj; = identity. Pdlya proposed to change R;; to:

1
Rij u= T (6U,‘j + Ujy1j+ Ujj+1 +Ui—1j+Ui—1-1+ UiJ—l) .



Finite Difference Models for the Dirichlet Problem, cont’d
This takes the form:




Finite Difference Models for the Dirichlet Problem, cont’d

Theorem (Pdlya, Weinberger): Ay < X: < *
1 - Zh2)\k
Corollary:
by -
(1) 2 <A<
1+ 22X,

(2) Xk — Ak = O(F?)

~h
Theorem (Lyashenko, Embegenov): @ = ¢ + O(h*) for Q
strictly convex with C! boundary.



Finite Difference Models for the Dirichlet Problem, cont’d

Modification 2: Pélya (1952) proposed to replaced both £ and
Rij with:

1
Lij u= 32 (Uiyrj + Uig1 41 + Uije1 + ..o+ Ujp1j—1 — 8ujj)

Riju= % (16ujj + 4uip1j + dujjr1 +4uj_1j

+ Aujjo1F Uiyt Ui U1+ Ui1jo1).

1 1 1 1 Xh 1 4 1
— 1 1 -8 1 u = — 4 16 4 Uin Qy
2
3h 1 1 36 1 4 1



Finite Difference Schemes: Second Modification, cont'd




Computation for a square of side 7

5 % 5 mesh 10 % 10 mesh 20 x 20 mesh

M1 M2 M1 M2 M1 M2
A 2 1.95 | 2.15 | 2.05 1.99 |2.04 |2.01 2.00 |2.01 |2.00
Ao || 5 | 462 |580 |540 | 489 [524 |512 | 497 |5.07 |5.03
Az |l s 4.62 5.81 5.40 4.89 5.24 5.12 4.97 5.07 5.03
Al 8 || 7.30 | 1033 | 875 || 7.78 |8.69 | 8.22 7.94 | 8.19 | 8.06
As || 10 || 8.27 12.84 | 11.97 || 9.46 10.85 | 10.57 || 9.85 10.23 | 10.15
Ag || 10 | 8.27 | 12.84 | 11.97 || 9.46 | 10.86 | 10.57 || 9.85 | 10.24 | 10.15
A7 || 13 || 10.94 | 18.76 | 15.32 || 12.36 | 14.73 | 13.67 || 12.82 | 13.48 | 13.18
Ag || 13 | 10.94 | 18.76 | 15.32 || 12.36 | 14.75 | 13.67 || 12.82 | 13.48 | 13.18
Ag || 17 || 11.92 | 23.96 | 21.89 || 15.33 | 19.30 | 18.81 || 16.53 | 17.64 | 17.48




Other Methods of Computation

» Finite Elements (Courant, Strang, Strang-Fix,
Babuska-Osborn, etc.)

» Method of Particular Solutions (MPS) of Henrici, Fox, Moler
(revived by Betcke and Trefethen, '05, Guidotti & Lambers,
'08, Saito & Zhang, '09)

» T. Driscoll used a modification of the MPS (of a modification
by Descloux & Tolley) to compute the eigenvalues of the
isospectral domains (Bilby and Hawk) of
Gordon-Webb-Wolpert

» Wu, Sprung, Martorell (1995) used Finite Difference to
compute the first 25 evalues of Bilby and Hawk

» Cureton and Kuttler (1999): Conformal transformation
techniques (for polygonal domains).



Algorithm and Results

Neural Networks
» This is a reliable engineering tool used to classify/label data.

» The process consists of a training/learning phase and a
validation /retrieval phase.

» Typically, one divides, randomly, a data set into two subsets:
One is used for training and the other one is used for
validation.

» A neural network is composed of layers, the number of which
depends on the complexity of the data set.



Neural Network
Hidden
Input
Output



Simple Shape Experiments

» We generated 100 binary images from five classes: disks,
ellipses, rectangles, triangles and squares, in random sizes and
orientations.

» Some images were so small that it is hard even for a human
eye to distinguish them apart

» Computed 20-dimensional vectors for F1, F», and F3
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Figure: (a) images of 100 random triangles and (b) the average and
standard deviation of the first 20 features from F;, F> and Fs.



Simple Shapes

Table: Correct classification rates of simple shapes using different
number of features from Fq, F», and F3 sets.

] n \ F1 Features \ F> Features \ F3 Features ‘

4 96.0% 96.8% 96.0%
8 99.2% 98.4% 97.6%
12 95.2% 95.2% 96.8%
16 97.6% 97.2% 98.4%
20 97.6% 99.2% 98.4%




Tolerance to Noise

» Gauge variation in the boundary of an input image

» Randomly corrup 20 percent of the boundary pixels by either
adding or deleting pixels at these locations

» These are more pronounced for small images
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Figure: Noise effects for F; features for rectangles



Hand-Drawn Shapes

Figure: Samples of the hand-drawn shapes



Hand-Drawn Shapes

Table: Classification results of the hand-drawn shapes.

F1 Features

F> Features

F3 Features

Number of features used

12

12

8

Correct classification rate

94.5%

93.5%

94.0%




Synthetic Images: n—Petal Shapes

» Defined by: r = a+ ecosf + cos nfl. Here a measures the size
of the interior of the images (randomly chosen between 1 and
2); 0 < e <1 (randomly chosen), and n is the number of
petals.

» We generated five sets of 100 n-petal images for n =3,4,5,6,
and 7 (total of 500 images).
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Figure: Plot of the first F; feature for all 4-petal and 5-petal images.



n—Petal Shapes
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Figure: Sample n-petal images (n =3, ..., 7).



n—Petal Shapes

Table: Classification results of the n-petal images (n=3,...,7).

Number of features

F1 Features

F> Features

F3 Features

4 70.5% 65% 74.5%
8 79.5% 83% 88.5%
12 93% 90% 92%
16 95% 89% 92%
20 97.5% 88% 94.5%




Real Data: Leaf Images

» We have images of leaves from 5 different types of trees,
photographed and scanned.

» These images are transformed from gray-scale to binary

images (the process is called threshholding) and are then fed
into the neural network



Leaf Images
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Figure: Picture of the leaves from 5 different types of trees: (a)

gray-scale; (b) threshholded.



Classification rates for leaf images

Table: Classification results of leaf images.

F1 Features

F> Features

F3 Features

Number of features used

2

4

2

Correct classification rate

88.9%

84.7%

88.9%




Recognizing Shape: Negative and Positive Answers

» J. Milnor constructed a pair of 16-dimensional tori that have
the same eigenvalues but different shapes (1964)

» Bilby and Hawk: Gordon, Webb, and Wolpert (1992): These
are a pair of regions in the plane that have different shapes
but identical eigenvalues (for the membrane problem); T.
Driscoll (1997), and more recently Betcke and Trefethen
(2005), checked isospectrality using through computation.




Recognizing Shape: Negative and Positive Answers

» Buser, Conway, Doyle (1994) constructed numerical examples
of isospectral 2-d domains.

W > R
G & %



Recognizing Shape: Negative and Positive Answers

» P. Bérard: Transplantation et isospectralité I, 11 (1992, 1993)

» H. Urakawa: Bounded domains which are isospectral, but not
congruent (early 80s)

» Driscoll-Gottlieb: Isospectral shapes with Neumann and
alternating boundary conditions (2003)



Recognizing Shape: Negative and Positive Answers

» Sleeman-Hua: Nonisometric isospectral connected fractal
domains (1998, 2000)
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Negative and Positive Answers

> S. Zelditch (GAFA, 2000), announcement in Math. Research
Letters (99): Under generic conditions, for a family of
bounded, simply connected, real analytic plane domains with
4-fold symmetry, the spectrum uniquely determines the
underlying domain (up to rigid motion)

» H. Hezari and S. Zelditch (2009): Extension to higher
dimensions: “Inverse spectral problem for analytic (Z/27)"
symmetric domains in R""



Minimax Principle

Ja |Vul?

)\k S Mlnghgz,‘..,gk maX317327~"»ak f U2
Q

where u = a1g1 + axgo + ... + ak8k

D(v,v)
h .
/\k < Mlng17g27--~7gk MaXa ,ay,...,ax h2 Z ‘/’2(,- J)
9
where
2 2
D(V, V) = Z (V,'+17j — Vivj) + (V,‘1J'+1 — V,‘yj)
Qp
and v = a1g1 + axgo + ... + akgk with g1, g, ..., gk linearly

independent mesh functions which vanish off Q4. Also
vij = v(ih, jh).



Finite Difference Models for the Dirichlet Problem, cont’d

Proof of Modification 1 (Idea goes back to L. Collatz '38, Courant,
'43, Pdlya, '52, Weinberger, '57, Hubbard, '60, Kuttler, '70): Start
with mesh eigenfunctions Vi, ..., Vi of the finite difference
problem. Define functions vy, ..., v, admissible in the continous
problem (in the minimax principle). Take each pixel and divide it
into two triangles by means of a diagonal in a fixed direction. Let
vi(x,y) be linear on each triangle such that it agrees with the
values of the eigenvector V; at the mesh points. Here

V=aivi +axve + ...+ agvik

V=aVi+aVo+...4+aV



Finite Difference Models for the Dirichlet Problem, cont’d
This lead Pélya to

/ |Vv|?dx < D(V, V)
Q

/ vidx > h? Z V23— Z {(Vi+1J_ Vij)®
Q

h
+ (v,-JH— \/;J)2+<v;+1J+l— Vi) (@
> hzzv2 ——D V, V)

Put these in the minimax pr|nC|p|e
D(v,V
A < max § - h2)
a1,a2,--,3k h ZQ,, ViJ — TD( V, V)
k h h
- max 21 A < Ak

2 2
ar,az,..,ak 1 — hT Z: 1 32)\h — %AZ




Finite Difference Models for the Dirichlet Problem, cont’d

Proof of Modification 2 (ldea goes back to Pdlya, '52, details
supplied in the book of Forsythe & Wasow, pp. 331-334): For
every square mesh with corners Up, Ug, Ung, and Uy, one
constructs a bilinear interpolation, then extend to all of

u(,y) = 2 (Up(h—x)(h— y) + Uex(h — y) + Unexy + Un(h — x)y).



