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Summary of Today’s Session:

◮ Properties of Feature Vectors

◮ Established Techniques for Shape Recognition

◮ Properties of the Dirichlet Laplacian

◮ Three Numerical Finite Difference Models for the Dirichlet
Problem

◮ Other Methods

◮ Algorithm

◮ Results

◮ Using the Spectrum to Recognize Shape: Negative and
Positive Answers

◮ Minimax Principle and the Numerical Schemes



Properties of Feature Vectors

Recall ..

A good feature vector associated with an object should be ..

◮ invariant under scaling

◮ invariant under rigid motion (rotation and translation)

◮ tolerant to noise and reasonable deformation

◮ should react differently to images from different classes,
producing feature vectors different from class to class

◮ use least number of features to design faster and simpler
classification algorithms



Established Techniques for Shape Recognition

◮ boundary methods vs global methods

◮ Shape measures or descriptors: circularity, rectangularity,
ellipticity, triangularity, etc.

◮ Topological tools

◮ moments

◮ Fourier descriptors/wavelet decomposition

◮ graph theoretical approach



Dirichlet Eigenvalue Problem

Key properties

◮ Eigenvalues are invariant under rigid motion (translation,
rotation)

◮ Domain monotonicity: If Ω1 ⊂ Ω2, then λk(Ω1) ≥ λk(Ω2).

◮ For α > 0, λk(α Ω) =
λk(Ω)

α2

◮ Scale Invariance: λk(αΩ)
λm(αΩ) = λk (Ω)

λm(Ω)

◮ All sorts of universal constraints on the eigenvalues



Feature Vectors
For a binary image assuming the shape of Ω, consider extracting 4
sets of features. Note that n counts the number of features.
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Here d1 ≤ d2, . . . ≤ dn are the first n e-values of a disk.
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(F4 scales down the Weyl growth of the eigenvalues.)



Three Numerical Finite Difference Models for the Dirichlet

Problem

Let h > 0. Pixelize the plane into lattice points (ih, jh), with i , j
integers. Let Ωh is a square grid covering Ω,
∂Ωh: pixels through which ∂Ω passes,and Nh is the number of
pixels that cover Ω.



Finite Difference Schemes
5-Point Finite Difference Approximation:

∆u =
∂2u

∂x2
+

∂2u

∂y2

Replace ∆ with 5-point finite difference approximation ∆h defined by:

∆hu :=
u(x + h) + u(x − h, y) + u(x , y − h) + u(x , y + h) − 4u(x , y)

h2



Finite Difference Models for the Dirichlet Problem, cont’d
With uij denoting the value of u at a lattice point (ih, jh), the
discretization takes the form:

(∆hu)i ,j =
1

h2
(ui+1,j + ui ,j+1 + ui−1,j + ui ,j−1 − 4uij)

Symbolically, we write it in the form:

∆h =
1

h2
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1





The eigenvalue problem is replaced by a matrix eigenvalue problem

−∆hU = λh U in Ωh (1)

U = 0 on ∂Ωh

Eigenmodes: 0 < λh
1 < λh

2 ≤ λh
3 ≤ · · · ≤ λh

Nh

What we know: ∆ − ∆h = O(h2)



Finite Difference Models for the Dirichlet Problem, cont’d

G. E. Forsythe (1953/4): There exists γ1, γ2, . . . , γk , . . ., etc, such
that

λh
k ≤ λk − γkh2 + o(h2)

the γk ’s cannot be computed, but are positive when Ω is convex.

In fact, we have the following (H. B. Keller, ’65):

Theorem: If τh(φ(P)) := (∆ − ∆h)φ(P) denotes the local

truncation error, for a given function φ, and point P ∈ Ωh, then for
each λk eigenvalue of the continuous problem, there exists λh,
eigenvalue of the difference problem, such that

|λk − λh| ≤
‖τ(uk)‖2

‖uk‖2



Finite Difference Schemes: First Modification, cont’d

Modification 1: Pólya (1952): Generalized eigenvalue problem.
One can think of the discretized problem as:

Lij u = λ Rij u.

with

Lij u =
1

h2
(ui+1,j + ui ,j+1 + ui−1,j + ui ,j−1 − 4 uij) ,

and Rij = identity. Pólya proposed to change Rij to:

Rij u = −
1

12
(6uij + ui+1,j + ui ,j+1 + ui−1,j + ui−1,j−1 + ui ,j−1) .



Finite Difference Models for the Dirichlet Problem, cont’d
This takes the form:
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U = 0 on ∂Ωh



Finite Difference Models for the Dirichlet Problem, cont’d

Theorem (Pólya, Weinberger): λk ≤ λ
h

k ≤
λk

1 − 1
4h2λk

Corollary:

(1)
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h

k

1 + 1
4h2λ

h

k

≤ λk ≤ λ
h

k

(2) λ
h

k − λk = O(h2)

Theorem (Lyashenko, Embegenov):
λh

k
+λ

h

k

2 = λk + O(h4) for Ω
strictly convex with C 1 boundary.



Finite Difference Models for the Dirichlet Problem, cont’d

Modification 2: Pólya (1952) proposed to replaced both Lij and
Rij with:

Lij u =
1

3h2
(ui+1,j + ui+1,j+1 + ui ,j+1 + . . . + ui+1,j−1 − 8uij)

and

Rij u = −
1

36
(16uij + 4ui+1,j + 4ui ,j+1 + 4ui−1,j

+ 4ui ,j−1 + ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1).
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Finite Difference Schemes: Second Modification, cont’d



Computation for a square of side π



Other Methods of Computation

◮ Finite Elements (Courant, Strang, Strang-Fix,
Babuska-Osborn, etc.)

◮ Method of Particular Solutions (MPS) of Henrici, Fox, Moler
(revived by Betcke and Trefethen, ’05, Guidotti & Lambers,
’08, Saito & Zhang, ’09)

◮ T. Driscoll used a modification of the MPS (of a modification
by Descloux & Tolley) to compute the eigenvalues of the
isospectral domains (Bilby and Hawk) of
Gordon-Webb-Wolpert

◮ Wu, Sprung, Martorell (1995) used Finite Difference to
compute the first 25 evalues of Bilby and Hawk

◮ Cureton and Kuttler (1999): Conformal transformation
techniques (for polygonal domains).



Algorithm and Results

Neural Networks

◮ This is a reliable engineering tool used to classify/label data.

◮ The process consists of a training/learning phase and a
validation/retrieval phase.

◮ Typically, one divides, randomly, a data set into two subsets:
One is used for training and the other one is used for
validation.

◮ A neural network is composed of layers, the number of which
depends on the complexity of the data set.



Neural Network



Simple Shape Experiments

◮ We generated 100 binary images from five classes: disks,
ellipses, rectangles, triangles and squares, in random sizes and
orientations.

◮ Some images were so small that it is hard even for a human
eye to distinguish them apart

◮ Computed 20-dimensional vectors for F1, F2, and F3
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Figure: (a) images of 100 random triangles and (b) the average and
standard deviation of the first 20 features from F1, F2 and F3.



Simple Shapes

Table: Correct classification rates of simple shapes using different
number of features from F1, F2, and F3 sets.

n F1 Features F2 Features F3 Features

4 96.0% 96.8% 96.0%
8 99.2% 98.4% 97.6%
12 95.2% 95.2% 96.8%
16 97.6% 97.2% 98.4%
20 97.6% 99.2% 98.4%



Tolerance to Noise

◮ Gauge variation in the boundary of an input image

◮ Randomly corrup 20 percent of the boundary pixels by either
adding or deleting pixels at these locations

◮ These are more pronounced for small images
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Figure: Noise effects for F1 features for rectangles



Hand-Drawn Shapes

Figure: Samples of the hand-drawn shapes



Hand-Drawn Shapes

Table: Classification results of the hand-drawn shapes.

F1 Features F2 Features F3 Features

Number of features used 12 12 8

Correct classification rate 94.5% 93.5% 94.0%



Synthetic Images: n−Petal Shapes

◮ Defined by: r = a + ǫ cos θ + cos nθ. Here a measures the size
of the interior of the images (randomly chosen between 1 and
2); 0 ≤ ǫ ≤ 1 (randomly chosen), and n is the number of
petals.

◮ We generated five sets of 100 n-petal images for n = 3, 4, 5, 6,
and 7 (total of 500 images).

Figure: Plot of the first F1 feature for all 4-petal and 5-petal images.



n−Petal Shapes

Figure: Sample n-petal images (n = 3, . . . , 7).



n−Petal Shapes

Table: Classification results of the n-petal images (n = 3, . . . , 7).

Number of features F1 Features F2 Features F3 Features

4 70.5% 65% 74.5%

8 79.5% 83% 88.5%

12 93% 90% 92%

16 95% 89% 92%

20 97.5% 88% 94.5%



Real Data: Leaf Images

◮ We have images of leaves from 5 different types of trees,
photographed and scanned.

◮ These images are transformed from gray-scale to binary
images (the process is called threshholding) and are then fed
into the neural network



Leaf Images

(a) (b)

Figure: Picture of the leaves from 5 different types of trees: (a)
gray-scale; (b) threshholded.



Classification rates for leaf images

Table: Classification results of leaf images.

F1 Features F2 Features F3 Features

Number of features used 2 4 2

Correct classification rate 88.9% 84.7% 88.9%



Recognizing Shape: Negative and Positive Answers

◮ J. Milnor constructed a pair of 16-dimensional tori that have
the same eigenvalues but different shapes (1964)

◮ Bilby and Hawk: Gordon, Webb, and Wolpert (1992): These
are a pair of regions in the plane that have different shapes
but identical eigenvalues (for the membrane problem); T.
Driscoll (1997), and more recently Betcke and Trefethen
(2005), checked isospectrality using through computation.



Recognizing Shape: Negative and Positive Answers

◮ Buser, Conway, Doyle (1994) constructed numerical examples
of isospectral 2-d domains.



Recognizing Shape: Negative and Positive Answers

◮ P. Bérard: Transplantation et isospectralité I, II (1992, 1993)

◮ H. Urakawa: Bounded domains which are isospectral, but not
congruent (early 80s)

◮ Driscoll-Gottlieb: Isospectral shapes with Neumann and
alternating boundary conditions (2003)



Recognizing Shape: Negative and Positive Answers

◮ Sleeman-Hua: Nonisometric isospectral connected fractal
domains (1998, 2000)



Negative and Positive Answers

◮ S. Zelditch (GAFA, 2000), announcement in Math. Research
Letters (99): Under generic conditions, for a family of
bounded, simply connected, real analytic plane domains with
4-fold symmetry, the spectrum uniquely determines the
underlying domain (up to rigid motion)

◮ H. Hezari and S. Zelditch (2009): Extension to higher
dimensions: “Inverse spectral problem for analytic (Z/2Z)n

symmetric domains in R
n”



Minimax Principle

λk ≤ Ming1,g2,...,gk
maxa1,a2,...,ak

∫

Ω |∇u|2
∫

Ω u2

where u = a1g1 + a2g2 + . . . + akgk

λh
k ≤ Ming1,g2,...,gk

maxa1,a2,...,ak

D(v , v)

h2
∑

v2(i , j)

where
D(v , v) =

∑

Ωh

(vi+1,j − vi,j)
2
+ (vi,j+1 − vi,j)

2

and v = a1g1 + a2g2 + . . . + akgk with g1, g2, . . . , gk linearly
independent mesh functions which vanish off Ωh. Also
vi ,j = v(ih, jh).



Finite Difference Models for the Dirichlet Problem, cont’d

Proof of Modification 1 (Idea goes back to L. Collatz ’38, Courant,
’43, Pólya, ’52, Weinberger, ’57, Hubbard, ’60, Kuttler, ’70): Start
with mesh eigenfunctions V1, . . . ,Vk of the finite difference
problem. Define functions v1, . . . , vk admissible in the continous
problem (in the minimax principle). Take each pixel and divide it
into two triangles by means of a diagonal in a fixed direction. Let
vi (x , y) be linear on each triangle such that it agrees with the
values of the eigenvector Vi at the mesh points. Here

v = a1v1 + a2v2 + . . . + akvk

V = a1V1 + a2V2 + . . . + akVk



Finite Difference Models for the Dirichlet Problem, cont’d
This lead Pólya to

∫

Ω
|∇v |2dx ≤ D(V , V )

∫

Ω
v2dx ≥ h2

∑
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V 2
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Put these in the minimax principle

λk ≤ max
a1,a2,...,ak

D(V , V )
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∑

Ωh
V 2
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Finite Difference Models for the Dirichlet Problem, cont’d

Proof of Modification 2 (Idea goes back to Pólya, ’52, details
supplied in the book of Forsythe & Wasow, pp. 331-334): For
every square mesh with corners UP , UE , UNE , and UN , one
constructs a bilinear interpolation, then extend to all of Ωh

u(x , y) =
1

h2
(UP(h − x)(h − y) + UEx(h − y) + UNExy + UN(h − x)y) .


