Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian \diamond

Lotfi Hermi, University of Arizona

\diamond based on joint work with M. A. Khabou and M. B. H. Rhouma

Summary of Today's Session:

- Properties of Feature Vectors
- Established Techniques for Shape Recognition
- Properties of the Dirichlet Laplacian
- Three Numerical Finite Difference Models for the Dirichlet Problem
- Other Methods
- Algorithm
- Results
- Using the Spectrum to Recognize Shape: Negative and Positive Answers
- Minimax Principle and the Numerical Schemes

Properties of Feature Vectors

Recall ..
A good feature vector associated with an object should be ..

- invariant under scaling
- invariant under rigid motion (rotation and translation)
- tolerant to noise and reasonable deformation
- should react differently to images from different classes, producing feature vectors different from class to class
- use least number of features to design faster and simpler classification algorithms

Established Techniques for Shape Recognition

- boundary methods vs global methods
- Shape measures or descriptors: circularity, rectangularity, ellipticity, triangularity, etc.
- Topological tools
- moments
- Fourier descriptors/wavelet decomposition
- graph theoretical approach

Dirichlet Eigenvalue Problem

Key properties

- Eigenvalues are invariant under rigid motion (translation, rotation)
- Domain monotonicity: If $\Omega_{1} \subset \Omega_{2}$, then $\lambda_{k}\left(\Omega_{1}\right) \geq \lambda_{k}\left(\Omega_{2}\right)$.
- For $\alpha>0, \lambda_{k}(\alpha \Omega)=\frac{\lambda_{k}(\Omega)}{\alpha^{2}}$
- Scale Invariance: $\frac{\lambda_{k}(\alpha \Omega)}{\lambda_{m}(\alpha \Omega)}=\frac{\lambda_{k}(\Omega)}{\lambda_{m}(\Omega)}$
- All sorts of universal constraints on the eigenvalues

Feature Vectors

For a binary image assuming the shape of Ω, consider extracting 4 sets of features. Note that n counts the number of features.

$$
\begin{gathered}
F_{1}(\Omega)=\left(\frac{\lambda_{1}}{\lambda_{2}}, \frac{\lambda_{1}}{\lambda_{3}}, \frac{\lambda_{1}}{\lambda_{4}}, \ldots, \frac{\lambda_{1}}{\lambda_{n}}\right) \\
F_{2}(\Omega)=\left(\frac{\lambda_{1}}{\lambda_{2}}, \frac{\lambda_{2}}{\lambda_{3}}, \frac{\lambda_{3}}{\lambda_{4}}, \ldots, \frac{\lambda_{n-1}}{\lambda_{n}}\right) \\
F_{3}(\Omega)=\left(\frac{\lambda_{1}}{\lambda_{2}}-\frac{d_{1}}{d_{2}}, \frac{\lambda_{1}}{\lambda_{3}}-\frac{d_{1}}{d_{3}}, \frac{\lambda_{1}}{\lambda_{4}}-\frac{d_{1}}{d_{4}}, \ldots, \frac{\lambda_{1}}{\lambda_{n}}-\frac{d_{1}}{d_{n}}\right)
\end{gathered}
$$

Here $d_{1} \leq d_{2}, \ldots \leq d_{n}$ are the first n e-values of a disk.

$$
F_{4}(\Omega)=\left(\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{3}}{2 \lambda_{1}}, \frac{\lambda_{4}}{3 \lambda_{1}}, \ldots, \frac{\lambda_{n+1}}{n \lambda_{1}}\right)
$$

(F_{4} scales down the Weyl growth of the eigenvalues.)

Three Numerical Finite Difference Models for the Dirichlet Problem

Let $h>0$. Pixelize the plane into lattice points (ih, $j h$), with i, j integers. Let Ω_{h} is a square grid covering Ω, $\partial \Omega_{h}$: pixels through which $\partial \Omega$ passes, and N_{h} is the number of pixels that cover Ω.

Finite Difference Schemes

5-Point Finite Difference Approximation:

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

Replace Δ with 5 -point finite difference approximation Δ_{h} defined by:

$$
\Delta_{h} u:=\frac{u(x+h)+u(x-h, y)+u(x, y-h)+u(x, y+h)-4 u(x, y)}{h^{2}}
$$

Finite Difference Models for the Dirichlet Problem, cont'd

With $u_{i j}$ denoting the value of u at a lattice point (ih, jh), the discretization takes the form:

$$
\left(\Delta_{h} u\right)_{i, j}=\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i, j+1}+u_{i-1, j}+u_{i, j-1}-4 u_{i j}\right)
$$

Symbolically, we write it in the form:

$$
\Delta_{h}=\frac{1}{h^{2}}\left(\begin{array}{ccc}
& 1 & \\
1 & -4 & 1 \\
& 1 &
\end{array}\right)
$$

The eigenvalue problem is replaced by a matrix eigenvalue problem

$$
\begin{array}{rll}
-\Delta_{h} U=\lambda^{h} U & \text { in } & \Omega_{h} \tag{1}\\
U=0 & \text { on } & \partial \Omega_{h}
\end{array}
$$

Eigenmodes: $0<\lambda_{1}^{h}<\lambda_{2}^{h} \leq \lambda_{3}^{h} \leq \cdots \leq \lambda_{N_{h}}^{h}$
What we know: $\Delta-\Delta_{h}=O\left(h^{2}\right)$

Finite Difference Models for the Dirichlet Problem, cont'd

G. E. Forsythe (1953/4): There exists $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}, \ldots$, etc, such that

$$
\lambda_{k}^{h} \leq \lambda_{k}-\gamma_{k} h^{2}+o\left(h^{2}\right)
$$

the γ_{k} 's cannot be computed, but are positive when Ω is convex.
In fact, we have the following (H. B. Keller, '65):
Theorem: If $\tau_{h}(\phi(P)):=\left(\Delta-\Delta_{h}\right) \phi(P)$ denotes the local truncation error, for a given function ϕ, and point $P \in \Omega_{h}$, then for each λ_{k} eigenvalue of the continuous problem, there exists λ^{h}, eigenvalue of the difference problem, such that

$$
\left|\lambda_{k}-\lambda^{h}\right| \leq \frac{\left\|\tau\left(u_{k}\right)\right\|_{2}}{\left\|u_{k}\right\|_{2}}
$$

Finite Difference Schemes: First Modification, cont'd

Modification 1: Pólya (1952): Generalized eigenvalue problem. One can think of the discretized problem as:

$$
\mathcal{L}_{i j} u=\lambda \mathcal{R}_{i j} u .
$$

with

$$
\mathcal{L}_{i j} u=\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i, j+1}+u_{i-1, j}+u_{i, j-1}-4 u_{i j}\right),
$$

and $\mathcal{R}_{i j}=$ identity. Pólya proposed to change $\mathcal{R}_{i j}$ to:

$$
\mathcal{R}_{i j} u=-\frac{1}{12}\left(6 u_{i j}+u_{i+1, j}+u_{i, j+1}+u_{i-1, j}+u_{i-1, j-1}+u_{i, j-1}\right) .
$$

Finite Difference Models for the Dirichlet Problem, cont'd This takes the form:

$$
\begin{aligned}
-\frac{1}{h^{2}}\left(\begin{array}{ccc}
1 & \\
1 & -4 & 1 \\
& 1 &
\end{array}\right) U & =\frac{\bar{\lambda}^{h}}{12}\left(\begin{array}{lll}
1 & 1 \\
1 & 6 & 1 \\
1 & 1 &
\end{array}\right) U \text { in } \Omega_{h} \\
U & =0 \text { on } \partial \Omega_{h}
\end{aligned}
$$

Finite Difference Models for the Dirichlet Problem, cont'd

Theorem (Pólya, Weinberger): $\lambda_{k} \leq \bar{\lambda}_{k}^{h} \leq \frac{\lambda_{k}}{1-\frac{1}{4} h^{2} \lambda_{k}}$
Corollary:
(1) $\frac{\bar{\lambda}_{k}^{h}}{1+\frac{1}{4} h^{2} \bar{\lambda}_{k}^{h}} \leq \lambda_{k} \leq \bar{\lambda}_{k}^{h}$
(2) $\bar{\lambda}_{k}^{h}-\lambda_{k}=O\left(h^{2}\right)$

Theorem (Lyashenko, Embegenov): $\frac{\lambda_{k}^{h}+\bar{\lambda}_{k}^{h}}{2}=\lambda_{k}+O\left(h^{4}\right)$ for Ω strictly convex with C^{1} boundary.

Finite Difference Models for the Dirichlet Problem, cont'd Modification 2: Pólya (1952) proposed to replaced both $\mathcal{L}_{i j}$ and $\mathcal{R}_{i j}$ with:

$$
\mathcal{L}_{i j} u=\frac{1}{3 h^{2}}\left(u_{i+1, j}+u_{i+1, j+1}+u_{i, j+1}+\ldots+u_{i+1, j-1}-8 u_{i j}\right)
$$

and

$$
\begin{aligned}
& \mathcal{R}_{i j} u=-\frac{1}{36}\left(16 u_{i j}+4 u_{i+1, j}+4 u_{i, j+1}+4 u_{i-1, j}\right. \\
&\left.+4 u_{i, j-1}+u_{i+1, j+1}+u_{i+1, j-1}+u_{i-1, j+1}+u_{i-1, j-1}\right) \\
&-\frac{1}{3 h^{2}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right) U=\frac{\bar{\lambda}^{h}}{36}\left(\begin{array}{ccc}
1 & 4 & 1 \\
4 & 16 & 4 \\
1 & 4 & 1
\end{array}\right) U \text { in } \Omega_{h} \\
& U=0 \text { on } \partial \Omega_{h}
\end{aligned}
$$

Finite Difference Schemes: Second Modification, cont'd

Computation for a square of side π

| | | 5×5 mesh | | | 10×10 mesh | | | 20×20 mesh | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | M1 | M2 | | M1 | M2 | | M1 | M2 |
| λ_{1} | 2 | 1.95 | 2.15 | 2.05 | 1.99 | 2.04 | 2.01 | 2.00 | 2.01 | 2.00 |
| λ_{2} | 5 | 4.62 | 5.80 | 5.40 | 4.89 | 5.24 | 5.12 | 4.97 | 5.07 | 5.03 |
| λ_{3} | 5 | 4.62 | 5.81 | 5.40 | 4.89 | 5.24 | 5.12 | 4.97 | 5.07 | 5.03 |
| λ_{4} | 8 | 7.30 | 10.33 | 8.75 | 7.78 | 8.69 | 8.22 | 7.94 | 8.19 | 8.06 |
| λ_{5} | 10 | 8.27 | 12.84 | 11.97 | 9.46 | 10.85 | 10.57 | 9.85 | 10.23 | 10.15 |
| λ_{6} | 10 | 8.27 | 12.84 | 11.97 | 9.46 | 10.86 | 10.57 | 9.85 | 10.24 | 10.15 |
| λ_{7} | 13 | 10.94 | 18.76 | 15.32 | 12.36 | 14.73 | 13.67 | 12.82 | 13.48 | 13.18 |
| λ_{8} | 13 | 10.94 | 18.76 | 15.32 | 12.36 | 14.75 | 13.67 | 12.82 | 13.48 | 13.18 |
| λ_{9} | 17 | 11.92 | 23.96 | 21.89 | 15.33 | 19.30 | 18.81 | 16.53 | 17.64 | 17.48 |

Other Methods of Computation

- Finite Elements (Courant, Strang, Strang-Fix, Babuska-Osborn, etc.)
- Method of Particular Solutions (MPS) of Henrici, Fox, Moler (revived by Betcke and Trefethen, '05, Guidotti \& Lambers, '08, Saito \& Zhang, '09)
- T. Driscoll used a modification of the MPS (of a modification by Descloux \& Tolley) to compute the eigenvalues of the isospectral domains (Bilby and Hawk) of Gordon-Webb-Wolpert
- Wu, Sprung, Martorell (1995) used Finite Difference to compute the first 25 evalues of Bilby and Hawk
- Cureton and Kuttler (1999): Conformal transformation techniques (for polygonal domains).

Algorithm and Results

Neural Networks

- This is a reliable engineering tool used to classify/label data.
- The process consists of a training/learning phase and a validation/retrieval phase.
- Typically, one divides, randomly, a data set into two subsets: One is used for training and the other one is used for validation.
- A neural network is composed of layers, the number of which depends on the complexity of the data set.

Neural Network

Hidden

Simple Shape Experiments

- We generated 100 binary images from five classes: disks, ellipses, rectangles, triangles and squares, in random sizes and orientations.
- Some images were so small that it is hard even for a human eye to distinguish them apart
- Computed 20-dimensional vectors for F_{1}, F_{2}, and F_{3}

(a)

(b)

Figure: (a) images of 100 random triangles and (b) the average and standard deviation of the first 20 features from F_{1}, F_{2} and F_{3}.

Simple Shapes

Table: Correct classification rates of simple shapes using different number of features from F_{1}, F_{2}, and F_{3} sets.

n	F_{1} Features	F_{2} Features	F_{3} Features
4	96.0%	96.8%	96.0%
8	99.2%	98.4%	97.6%
12	95.2%	95.2%	96.8%
16	97.6%	97.2%	98.4%
20	97.6%	99.2%	98.4%

Tolerance to Noise

- Gauge variation in the boundary of an input image
- Randomly corrup 20 percent of the boundary pixels by either adding or deleting pixels at these locations
- These are more pronounced for small images

Figure: Noise effects for F_{1} features for rectangles

Hand-Drawn Shapes

Figure: Samples of the hand-drawn shapes

Hand-Drawn Shapes

Table: Classification results of the hand-drawn shapes.

	F_{1} Features	F_{2} Features	F_{3} Features
Number of features used	12	12	8
Correct classification rate	94.5%	93.5%	94.0%

Synthetic Images: n-Petal Shapes

- Defined by: $r=a+\epsilon \cos \theta+\cos n \theta$. Here a measures the size of the interior of the images (randomly chosen between 1 and 2); $0 \leq \epsilon \leq 1$ (randomly chosen), and n is the number of petals.
- We generated five sets of $100 n$-petal images for $n=3,4,5,6$, and 7 (total of 500 images).

Figure: Plot of the first F_{1} feature for all 4-petal and 5-petal images.

n-Petal Shapes

Figure: Sample n-petal images $(n=3, \ldots, 7)$.

n-Petal Shapes

Table: Classification results of the n-petal images $(n=3, \ldots, 7)$.

Number of features	F_{1} Features	F_{2} Features	F_{3} Features
4	70.5%	65%	74.5%
8	79.5%	83%	88.5%
12	93%	90%	92%
16	95%	89%	92%
20	97.5%	88%	94.5%

Real Data: Leaf Images

- We have images of leaves from 5 different types of trees, photographed and scanned.
- These images are transformed from gray-scale to binary images (the process is called threshholding) and are then fed into the neural network

Leaf Images

Figure: Picture of the leaves from 5 different types of trees: (a) gray-scale; (b) threshholded.

Classification rates for leaf images

Table: Classification results of leaf images.

	F_{1} Features	F_{2} Features	F_{3} Features
Number of features used	2	4	2
Correct classification rate	88.9%	84.7%	88.9%

Recognizing Shape: Negative and Positive Answers

- J. Milnor constructed a pair of 16-dimensional tori that have the same eigenvalues but different shapes (1964)
- Bilby and Hawk: Gordon, Webb, and Wolpert (1992): These are a pair of regions in the plane that have different shapes but identical eigenvalues (for the membrane problem); T . Driscoll (1997), and more recently Betcke and Trefethen (2005), checked isospectrality using through computation.

Recognizing Shape: Negative and Positive Answers

- Buser, Conway, Doyle (1994) constructed numerical examples of isospectral 2-d domains.

Recognizing Shape: Negative and Positive Answers

- P. Bérard: Transplantation et isospectralité I, II $(1992,1993)$

- H. Urakawa: Bounded domains which are isospectral, but not congruent (early 80s)
- Driscoll-Gottlieb: Isospectral shapes with Neumann and alternating boundary conditions (2003)

Recognizing Shape: Negative and Positive Answers

- Sleeman-Hua: Nonisometric isospectral connected fractal domains $(1998,2000)$

Negative and Positive Answers

- S. Zelditch (GAFA, 2000), announcement in Math. Research Letters (99): Under generic conditions, for a family of bounded, simply connected, real analytic plane domains with 4-fold symmetry, the spectrum uniquely determines the underlying domain (up to rigid motion)
- H. Hezari and S. Zelditch (2009): Extension to higher dimensions: "Inverse spectral problem for analytic $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ symmetric domains in $\mathbb{R}^{n "}$

Minimax Principle

$$
\lambda_{k} \leq \operatorname{Min}_{g_{1}, g_{2}, \ldots, g_{k}} \max _{a_{1}, a_{2}, \ldots, a_{k}} \frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{2}}
$$

where $u=a_{1} g_{1}+a_{2} g_{2}+\ldots+a_{k} g_{k}$

$$
\lambda_{k}^{h} \leq \operatorname{Min}_{g_{1}, g_{2}, \ldots, g_{k}} \max _{a_{1}, a_{2}, \ldots, a_{k}} \frac{D(v, v)}{h^{2} \sum v^{2}(i, j)}
$$

where

$$
D(v, v)=\sum_{\Omega_{h}}\left(v_{i+1, j}-v_{i, j}\right)^{2}+\left(v_{i, j+1}-v_{i, j}\right)^{2}
$$

and $v=a_{1} g_{1}+a_{2} g_{2}+\ldots+a_{k} g_{k}$ with $g_{1}, g_{2}, \ldots, g_{k}$ linearly independent mesh functions which vanish off Ω_{h}. Also $v_{i, j}=v(i h, j h)$.

Finite Difference Models for the Dirichlet Problem, cont'd

Proof of Modification 1 (Idea goes back to L. Collatz '38, Courant, '43, Pólya, '52, Weinberger, '57, Hubbard, '60, Kuttler, '70): Start with mesh eigenfunctions V_{1}, \ldots, V_{k} of the finite difference problem. Define functions v_{1}, \ldots, v_{k} admissible in the continous problem (in the minimax principle). Take each pixel and divide it into two triangles by means of a diagonal in a fixed direction. Let $v_{i}(x, y)$ be linear on each triangle such that it agrees with the values of the eigenvector V_{i} at the mesh points. Here

$$
v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{k} v_{k}
$$

$$
V=a_{1} V_{1}+a_{2} V_{2}+\ldots+a_{k} V_{k}
$$

Finite Difference Models for the Dirichlet Problem, cont'd This lead Pólya to

$$
\begin{align*}
& \int_{\Omega}|\nabla v|^{2} d x \leq D(V, V) \\
& \int_{\Omega} v^{2} d x \geq h^{2} \sum_{\Omega_{h}} v_{i, j}^{2}-\frac{h^{2}}{12} \sum_{\Omega_{h}}\left\{\left(v_{i+1, j}-v_{i, j}\right)^{2}\right. \\
&+\left.\left(V_{i, j+1}-V_{i, j}\right)^{2}+\left(V_{i+1, j+1}-V_{i, j}\right)^{2}\right\} \tag{2}\\
& \geq h^{2} \sum_{\Omega_{h}} v_{i, j}^{2}-\frac{h^{2}}{4} D(V, V)
\end{align*}
$$

Put these in the minimax principle

$$
\begin{aligned}
\lambda_{k} & \leq \max _{a_{1}, a_{2}, \ldots, a_{k}} \frac{D(V, V)}{h^{2} \sum_{\Omega_{h}} V_{i, j}^{2}-\frac{h^{2}}{4} D(V, V)} \\
& =\max _{a_{1}, a_{2}, \ldots, a_{k}} \frac{\sum_{i=1}^{k} a_{k}^{2} \lambda_{i}^{h}}{1-\frac{h^{2}}{4} \sum_{i=1}^{k} a_{k}^{2} \lambda_{i}^{h}} \leq \frac{\lambda_{k}^{h}}{1-\frac{h^{2}}{4} \lambda_{k}^{h}}
\end{aligned}
$$

Finite Difference Models for the Dirichlet Problem, cont'd

Proof of Modification 2 (Idea goes back to Pólya, '52, details supplied in the book of Forsythe \& Wasow, pp. 331-334): For every square mesh with corners $U_{P}, U_{E}, U_{N E}$, and U_{N}, one constructs a bilinear interpolation, then extend to all of Ω_{h}

$$
u(x, y)=\frac{1}{h^{2}}\left(U_{P}(h-x)(h-y)+U_{E} x(h-y)+U_{N E} x y+U_{N}(h-x) y\right)
$$

