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Summary of Today’s Session:

◮ The Three Other Model Problems

◮ A flavor of known inequalities

◮ Universal inequalities (for buckling and clamped plate
problems)

◮ Numerical Schemes

◮ Feature functions

◮ Results

◮ A Unified Approach to Universal Eigenvalues for Second and
Higher Order Elliptic Operators



Quantum Drums: Bibly, Hawk, .. and a Broken Hawk
“.. Construct quantum isospectral nanonstructures with matching
electronic structure”

They also have a construction for another isospectral pair:
Aye-Aye and Beluga



The other model problems

Beyond the Dirichlet eigenvalue problem... one can use:
1. The Free Membrane Problem:

−∆v = µ v in Ω (1)

∂v

∂n
= 0 on ∂Ω

Eigenmodes: 0 = µ1 < µ2 ≤ µ3 ≤ · · ·



The Other Model Problems

2. The Clamped Plate Problem:

∆2w = Γ w in Ω (2)

w =
∂w

∂n
= 0 on ∂Ω

Eigenmodes: 0 < Γ1 ≤ Γ2 ≤ Γ3 ≤ · · ·
3. The Buckling (of a Clamped Plate) Problem:

∆2w = −Λ ∆w in Ω (3)

w =
∂w

∂n
= 0 on ∂Ω

Eigenmodes: 0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ · · ·



Motivation for Bilaplacian: Chladni Plates
Ernest Chladni of Saxony, “father of accoustics”
His experiments: vibrated a fixed plate with a violin bow and then
sprinkled sand across it to show the formation of the nodal lines,
mid-1800s (see Bruno Lévy, INRIA)



Rayleigh Quotients

◮ Clamped Problem

R(φ) =

∫

Ω
(∆φ)2
∫

Ω
φ2

Apply Cauchy-Schwarz:
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Ω

|∇φ|2
)2

=
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−
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φ∆φ

)2

≤
(∫
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So
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Ω
|∇φ|2
∫

Ω
φ2

)2

≤
∫

Ω
(∆φ)2
∫

Ω
φ2

Or
λ2

k(Ω) ≤ Γk(Ω).

Weinstein: λ2
1 ≤ Γ1



Rayleigh Quotients

◮ Buckling Problem

R(φ) =

∫

Ω
(∆φ)2

∫

Ω
|∇φ|2

Apply Cauchy-Schwarz:
(∫

Ω

|∇φ|2
)2

=

(

−
∫

Ω

φ∆φ

)2

≤
(∫

Ω

φ2

) (∫

Ω

(∆φ)2
)

So
∫

Ω
|∇φ|2
∫

Ω
φ2

≤
∫

Ω
(∆φ)2

∫

Ω
|∇φ|2

Or
λk(Ω) ≤ Λk(Ω)

Note: λ2 ≤ Λ1 (Payne)
See: M. Ashbaugh, “On Universal Inequalities for the Low
Eigenvalues of the Bucklng Problem”, Partial differential equations
and inverse problems, 2004



A flavor of inequalites: Clamped Plate
For simplicity Ω ⊂ R

2

◮ Nadirashvili proved Rayleigh’s conjecture

Γ1 ≥ π2k2
0

|Ω|2

(isoperimetric) with k0 = 3.19622062
◮ Weyl asymptotic

Γk ≈ 16π2k2

|Ω|2
◮ Levine-Protter proved Li-Yau-type inequality (1985)

Γk ≥ 16π2k2

3|Ω|2 .

◮ Payne-Pólya-Weinberger (1956):

Γk+1 − Γk ≤ 8

k

k
∑

j=1

Γj , also
Γ2

Γ1

≤ 9



A flavor of inequalites: Clamped Plate

◮ Ashbaugh inequality (1998): Γk+1 − Γk ≤ 8

k2

(

∑k
j=1

√

Γj

)2

◮ Hook and Chen & Qian (1990)

k2
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



k
∑

j=1

√

Γj

Γk+1 − Γj
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
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√
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

improves earlier results by Hile-Yeh (1984)
◮ Cheng-Yang (2006)
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k
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√
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k
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◮ Wang-Xia (2007)
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A flavor of inequalities: Buckling Problem
◮ Pólya-Szegö Conjecture: Λ1(Ω) ≥ Λ1(Ω

⋆)

◮ Bramble-Payne: Λ1(Ω) ≥ 2πj2
0,1

|Ω|

◮ PPW:
Λ2

Λ1

≤ 3

◮ Hile-Yeh:
Λ2

Λ1

≤ 2.5

◮ Ashbaugh:
Λ2 + Λ3

Λ1

≤ 6

◮ Cheng and Yang (2006) proved

k
∑

j=1

(Λk+1 − Λj)
2 ≤ 4

k
∑

j=1

Λj (Λk+1 − Λj) .

◮ There is reason to believe that one can improve this inequality
to

k
∑

j=1

(Λk+1 − Λj)
2 ≤ 2

k
∑

j=1

Λj (Λk+1 − Λj) .



Finite Difference Schemes: Neumann Eigenvalues
Remember that we represent all these discretizations in the form:

Lij v = µh Rij v .

L is called the stiffness matrix, while R is called the mass matrix.
In the Neumann case, L is still represented by

∆h =
1

h2





1
1 −4 1

1





and (without modifications) R is represented by the identity. The
normal boundary condition is given (for boundary pixels) by

vi ,j = average of adjacent “interior” points

e.g.,
vi ,j+1 + vi+1,j + vi ,j−1 = 3vi ,j .

Hubbard (1968) carried most of the analysis for the Neumann
finite difference scheme (à la Weinberger).



Finite Difference Schemes: Clamped Plate

∆2
hv = Γhv (4)

The result of applying ∆2
hv = ∆h (∆hv) is a 13-point discrete

scheme:

h4 ∆2
hv = v(x , y − 2h)

+ 2v(x − h, y − h) − 8v(x , y − h) + 2v(x + h, y − h)

+ v(x − 2h, y) − 8v(x − h, y) + 20v(x , y)

− 8v(x + h, y) + v(x + 2h, y) + 2v(x − h, y + h)

− 8v(x , y + h) + 2v(x + h, y + h) + v(x , y + 2h) (5)



Finite Difference Schemes: Clamped Plate, Cont’d

The recursion is given by:

h4
(

∆2
hv
)

ij
= vi ,j−2

+ 2vi−1,j−1 − 8vi ,j−1 + 2vi+1,j−1

+ vi−2,j − 8vi−1,j + 20vi ,j

− 8vi+1,j + vi+2,j + 2vi−1,j+1

− 8vi ,j+1 + 2vi+1,j+1 + vi ,j+2 (6)

The boundary pixels are subject to:

vi ,j = 0

and
vi ,j = average of adjacent “interior” points



Finite Difference Schemes: Clamped Plate

The stiffness matrix is represented by:

∆2
h =

1

h4













1
2 −8 2

1 −8 20 −8 1
2 −8 2

1















Finite Difference Schemes: Clamped Plate



Comparison of known and computed ratios of clamped
plate eigenvalues for disks

Known values taken from A. Weinstein (1969)



Comparison of known and computed ratios of clamped
plate eigenvalues for squares (A. Weinstein)



Other Methods of Computation

◮ Weinstein Method (late 30s)

◮ Weinstein-Aronszajn Method (mid 40s)

◮ Fichera Method of Orthogonal Invariants (60s, 70s)

◮ Bazley-Fox-Stadter (1967)

◮ J. McLaurin (1968)

◮ Kuttler Method (1972) (à la Weinberger)

◮ Bauer-Reis (1972)

◮ C. Wieners (1996)

◮ Aimi & Diligenti (1992) (“Buckling” à la Fichera)

◮ Weinberger (à la Weinberger (for Clamped) and à la Fichera
(for Neumann))



Feature Vectors
λ represents any of the eigenvalues µ, Γ, Λ.

F1(Ω) =

(

λ1

λ2

,
λ1

λ3

,
λ1

λ4

, . . . ,
λ1

λn

)

F2(Ω) =

(

λ1

λ2

,
λ2

λ3

,
λ3

λ4

, . . . ,
λn−1

λn

)

F3(Ω) =

(

λ1

λ2

− d1

d2

,
λ1

λ3

− d1

d3

,
λ1

λ4

− d1

d4

, . . . ,
λ1

λn

− d1

dn

)

Here d1 ≤ d2, . . . ≤ dn are the first n e-values of a disk.

F4(Ω) =

(

λ2

λ1

,
λ3

2λ1

,
λ4

3λ1

, . . . ,
λn+1

nλ1

)

(F4 scales down the Weyl growth of the eigenvalues.)
For clamped plate:

F4(Ω) =

(

Γ2

Γ1

,
Γ3

4Γ1

,
Γ4

9Γ1

, . . . ,
Γn+1

n2Γ1

)

(F4 scales down the Weyl growth of the eigenvalues.)



Experiments: Correct classification rates for hand-drawn
shapes



Experiments: Standard Deviation of the first F2 features
for 100 triangles using Dirichlet, Clamped and Buckling
Eigenvalues



Experiments

◮ 40 disks, triangles, rectangles, ellipses, diamonds, and squares
(total 240 images) of different sizes and orientations hand
written and scanned into computer: Noisy and irregular
boundaries

◮ 300 additional computer generated images of the same shapes
were added to the database (aspect ratios vary from 2 to 2.5
for elongated figures): Noise free

◮ These 300 computer generated images were used to train the
neural network with

◮ Dirichlet, Neumann, Clamped, and Buckling eigenvalues were
computed and n = 20 F1, . . . ,F4 feature vectors from each of
the six classes were generated.

◮ A simple neural network was trained with the 300 computer
generated images

◮ Another 300 computer generated images and the 240
hand-written ones were used in the validation phase



Results for Computer Generated and Hand-Drawn Shapes

[] []

[] []



Shape Queries Using Image Databases (SQUID)
http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html



Experiments on SQUID Database

◮ Dirichlet, Neumann, buckling plate, and clamped plate
features were generated for 195 images of sting ray, snapper,
eel, mullet, and flounder-like fish.

◮ A series of simple neural networks were trained on 65 images
from this dataset and tested on the remaining 130 images.

◮ n = 4, 8, 12, 16, and 20 eigenvalues were used as inputs into
the neural net for each of the model problems.



Experiments on SQUID Database: Correct Classification
Rate of the Fish



Unified Approach to Universal Inequalities

◮ H. C. Yang inequality is just a discriminant condition in an
abstract (purely) algebraic scheme.

◮ Universal inequalities for Dirichlet eigenvalues of Yang-type
and versions recently proved for the clamped plate problem
(proved by Wang-Xia, Wu-Cao, etc.) are corollaries to this
setting.

◮ This work generalizes earlier joint work with M. Ashbaugh
(Pac. J. Math., 2004)



Setting:

◮ H be a complex Hilbert space with inner product 〈 , 〉,

◮ A : D ⊂ H → H a self-adjoint operator defined on a dense
domain D which is semibounded below and has a discrete
spectrum λ1 ≤ λ2 ≤ λ3 ≤ . . ..

◮ {Tk : D → H}N
k=1

: a collection of skew-symmetric operators,

◮ {Bk : Tk(D) → H}N
k=1

a collection of symmetric operators
which leave D invariant, and {ui}∞i=1 the normalized
eigenvectors of A, ui corresponding to λi . We may further
assume that {ui}∞i=1 is an orthonormal basis for H.

◮ [A, B] denotes the commutator of two operators defined by
[A, B] = AB − BA, and ‖u‖ =

√

〈u, u〉.



Main Theorem
Define:

βi =

N
∑

k=1

〈[Bk , Tk ]ui , ui 〉,

ρi =
N
∑

k=1

〈[A, Bk ]ui , Bkui 〉,

and

Λi =
N
∑

k=1

‖Tkui‖2.

Statement:

The eigenvalues {λi} of the operator A satisfy the following
inequality

(

m
∑

i=1

βi (λm+1 − λi )
2

)2

≤ 4

(

m
∑

i=1

ρi (λm+1 − λi )
2

) (

m
∑

i=1

Λi (λm+1 − λi )

)



Consequences:

Facts:

◮

ρi =
1

2

N
∑

k=1

〈[Bk , [A, Bk ]]ui , ui 〉.

◮ When Tk = [A, Bk ], one has βi = 2ρi ,
Λi =

∑N
k=1 ‖[A, Bk ]ui‖2. In this case, the statement of the

theorem reduces to the familiar H. C. Yang inequality in the
abstract setting (Levitin-Parnovski, 2001, Ashbaugh-H., 2004,
Harrell-Stubbe 2009):

m
∑

i=1

ρi (λm+1 − λi )
2 ≤

m
∑

i=1

Λi (λm+1 − λi ) .



Flavor of the Proof

◮ Start with Rayleigh-Ritz for λm+1

λm+1 ≤ 〈Aφ, φ〉
〈φ, φ〉

◮

φi = Bui −
m
∑

j=1

aijuj , (7)

where aij = 〈Bui , uj〉
◮ aji = aij .

◮ Let bij = 〈[A, B]ui , uj〉, then

bij = −bji = (λj − λi ) aij .



Flavor of the Proof, cont’d

◮ R-R reduces to:

λm+1 − λi ≤
〈[A, B]ui , φ〉

〈φ, φ〉 .

◮ Also

〈[A, B]ui , φi 〉 = 〈[A, B]ui , Bui 〉 −
m
∑

j=1

(λj − λi ) |aij |2.

◮ Since T is an antisymmetric operator

Re〈φi , Tui 〉 = Re〈φi , Tui −
m
∑

j=1

tijuj〉,

for tij = 〈Tui , uj〉 (since 〈φi , uj〉 = 0, for j = 1, 2, . . . ,m.)



Flavor of the Proof, cont’d

◮ For γ > 0:

Re〈φi ,Tui 〉 ≤
1

2γ
(λm+1 − λi ) ‖φi‖2+

γ

2 (λm+1 − λi )



‖Tui‖2 −
m
∑

j=1

|tij |2




◮

(λm+1 − λi )
2
Re〈φi ,Tui 〉 ≤ 1

2γ
(λm+1 − λi )

3 ‖φi‖2

+
γ

2
(λm+1 − λi )



‖Tui‖2 −
m
∑

j=1

|tij |2


 .



Flavor of the Proof, cont’d
◮ Put things together to get

(λm+1 − λi )
2
Re 〈φi ,Tui 〉

≤ 1

2γ
(λm+1 − λi )

2



〈[A,B]ui ,Bui 〉 −
m
∑

j=1

(λj − λi ) |aij |2




+
γ

2
(λm+1 − λi )



‖Tui‖2 −
m
∑

j=1

|tij |2


 .

◮ .. after a series of steps, one is led to:

m
∑

i=1

(λm+1 − λi )
2 〈[B,T ]ui , ui 〉 ≤ 1

γ

m
∑

i=1

(λm+1 − λi )
2 〈[A,B]ui ,Bui 〉

+ γ

m
∑

i=1

(λm+1 − λi ) ‖Tui‖2.

◮ Restore the dependence of T and B on the index k = 1, . . . N, then
sum on k



Flavor of the Proof, cont’d

◮ We are led to:

m
∑

i=1

βi (λm+1 − λi )
2 ≤ 1

γ

m
∑

i=1

ρi (λm+1 − λi )
2
+ γ

m
∑

i=1

Λi (λm+1 − λi )

◮ Reduce to a quadratic statement in γ which is always ≥ 0, so the
discriminant ≤ 0. This is the statement of the theorem.

Thank you!


