Lecture 3: Image Recognition Using Neumann and Higher Order Eigenvalue Problems \diamond

Lotfi Hermi, University of Arizona

\diamond based on joint work with M. A. Khabou and M. B. H. Rhouma

Summary of Today's Session:

- The Three Other Model Problems
- A flavor of known inequalities
- Universal inequalities (for buckling and clamped plate problems)
- Numerical Schemes
- Feature functions
- Results
- A Unified Approach to Universal Eigenvalues for Second and Higher Order Elliptic Operators

Quantum Drums: Bibly, Hawk, .. and a Broken Hawk

".. Construct quantum isospectral nanonstructures with matching electronic structure"

Quantum Phase Extraction in Isospectral Electronic

Nanostructures

Christopher R. Moon, et al.
Science 319, 782 (2008);
DOI: 10.1126/science. 1151490

They also have a construction for another isospectral pair: Aye-Aye and Beluga

The other model problems

Beyond the Dirichlet eigenvalue problem... one can use:

1. The Free Membrane Problem:

$$
\begin{align*}
-\Delta v=\mu v & \text { in } \tag{1}\\
\frac{\partial v}{\partial n}=0 & \text { on }
\end{align*} \quad \partial \Omega
$$

Eigenmodes: $0=\mu_{1}<\mu_{2} \leq \mu_{3} \leq \cdots$

The Other Model Problems

2. The Clamped Plate Problem:

$$
\begin{array}{cl}
\Delta^{2} w=\Gamma w & \text { in } \tag{2}\\
w=\frac{\partial w}{\partial n}=0 & \text { on }
\end{array} \partial \Omega
$$

Eigenmodes: $0<\Gamma_{1} \leq \Gamma_{2} \leq \Gamma_{3} \leq \cdots$
3. The Buckling (of a Clamped Plate) Problem:

$$
\begin{array}{rlrl}
\Delta^{2} w & =-\Lambda \Delta w & \text { in } \quad \Omega \tag{3}\\
w & =\frac{\partial w}{\partial n}=0 & \text { on } & \partial \Omega
\end{array}
$$

Eigenmodes: $0<\Lambda_{1} \leq \Lambda_{2} \leq \Lambda_{3} \leq \cdots$

Motivation for Bilaplacian: Chladni Plates

Ernest Chladni of Saxony, "father of accoustics"
His experiments: vibrated a fixed plate with a violin bow and then sprinkled sand across it to show the formation of the nodal lines, mid-1800s (see Bruno Lévy, INRIA)

Rayleigh Quotients

- Clamped Problem

$$
R(\phi)=\frac{\int_{\Omega}(\Delta \phi)^{2}}{\int_{\Omega} \phi^{2}}
$$

Apply Cauchy-Schwarz:

$$
\left(\int_{\Omega}|\nabla \phi|^{2}\right)^{2}=\left(-\int_{\Omega} \phi \Delta \phi\right)^{2} \leq\left(\int_{\Omega} \phi^{2}\right)\left(\int_{\Omega}(\Delta \phi)^{2}\right)
$$

So

$$
\left(\frac{\int_{\Omega}|\nabla \phi|^{2}}{\int_{\Omega} \phi^{2}}\right)^{2} \leq \frac{\int_{\Omega}(\Delta \phi)^{2}}{\int_{\Omega} \phi^{2}}
$$

Or

$$
\lambda_{k}^{2}(\Omega) \leq \Gamma_{k}(\Omega)
$$

Weinstein: $\lambda_{1}^{2} \leq \Gamma_{1}$

Rayleigh Quotients

- Buckling Problem

$$
R(\phi)=\frac{\int_{\Omega}(\Delta \phi)^{2}}{\int_{\Omega}|\nabla \phi|^{2}}
$$

Apply Cauchy-Schwarz:

$$
\left(\int_{\Omega}|\nabla \phi|^{2}\right)^{2}=\left(-\int_{\Omega} \phi \Delta \phi\right)^{2} \leq\left(\int_{\Omega} \phi^{2}\right)\left(\int_{\Omega}(\Delta \phi)^{2}\right)
$$

So

$$
\frac{\int_{\Omega}|\nabla \phi|^{2}}{\int_{\Omega} \phi^{2}} \leq \frac{\int_{\Omega}(\Delta \phi)^{2}}{\int_{\Omega}|\nabla \phi|^{2}}
$$

Or

$$
\lambda_{k}(\Omega) \leq \Lambda_{k}(\Omega)
$$

Note: $\lambda_{2} \leq \Lambda_{1}$ (Payne)
See: M. Ashbaugh, "On Universal Inequalities for the Low Eigenvalues of the Bucklng Problem", Partial differential equations and inverse problems, 2004

A flavor of inequalites: Clamped Plate

For simplicity $\Omega \subset \mathbb{R}^{2}$

- Nadirashvili proved Rayleigh's conjecture

$$
\Gamma_{1} \geq \frac{\pi^{2} k_{0}^{2}}{|\Omega|^{2}}
$$

(isoperimetric) with $k_{0}=3.19622062$

- Weyl asymptotic

$$
\Gamma_{k} \approx \frac{16 \pi^{2} k^{2}}{|\Omega|^{2}}
$$

- Levine-Protter proved Li-Yau-type inequality (1985)

$$
\Gamma_{k} \geq \frac{16 \pi^{2} k^{2}}{3|\Omega|^{2}}
$$

- Payne-Pólya-Weinberger (1956):

$$
\Gamma_{k+1}-\Gamma_{k} \leq \frac{8}{k} \sum_{j=1}^{k} \Gamma_{j}, \text { also } \frac{\Gamma_{2}}{\Gamma_{1}} \leq 9
$$

A flavor of inequalites: Clamped Plate

- Ashbaugh inequality (1998): $\Gamma_{k+1}-\Gamma_{k} \leq \frac{8}{k^{2}}\left(\sum_{j=1}^{k} \sqrt{\Gamma_{j}}\right)^{2}$
- Hook and Chen \& Qian (1990)

$$
\frac{k^{2}}{8} \leq\left(\sum_{j=1}^{k} \frac{\sqrt{\Gamma_{j}}}{\Gamma_{k+1}-\Gamma_{j}}\right)\left(\sum_{j=1}^{k} \sqrt{\Gamma_{j}}\right)
$$

improves earlier results by Hile-Yeh (1984)

- Cheng-Yang (2006)

$$
\Gamma_{k+1}-\frac{1}{k} \sum_{j=1}^{k} \Gamma_{j} \leq \sqrt{8} \frac{1}{k} \sum_{j=1}^{k} \sqrt{\Gamma_{j}\left(\Gamma_{k+1}-\Gamma_{j}\right)}
$$

- Wang-Xia (2007)

$$
\begin{array}{r}
\sum_{j=1}^{k}\left(\Gamma_{k+1}-\Gamma_{j}\right)^{2} \leq \sqrt{8}\left(\sum_{j=1}^{k}\left(\Gamma_{k+1}-\Gamma_{j}\right)^{2} \sqrt{\Gamma_{j}}\right)^{1 / 2} \times \\
\left(\sum^{k}\left(\Gamma_{k+1}-\Gamma_{j}\right) \sqrt{\Gamma_{j}}\right)^{1 / 2}
\end{array}
$$

A flavor of inequalities: Buckling Problem

- Pólya-Szegö Conjecture: $\Lambda_{1}(\Omega) \geq \Lambda_{1}\left(\Omega^{\star}\right)$
- Bramble-Payne: $\Lambda_{1}(\Omega) \geq \frac{2 \pi j_{0,1}^{2}}{|\Omega|}$
- PPW: $\frac{\Lambda_{2}}{\Lambda_{1}} \leq 3$
- Hile-Yeh: $\frac{\Lambda_{2}}{\Lambda_{1}} \leq 2.5$
- Ashbaugh: $\frac{\Lambda_{2}+\Lambda_{3}}{\Lambda_{1}} \leq 6$
- Cheng and Yang (2006) proved

$$
\sum_{j=1}^{k}\left(\Lambda_{k+1}-\Lambda_{j}\right)^{2} \leq 4 \sum_{j=1}^{k} \Lambda_{j}\left(\Lambda_{k+1}-\Lambda_{j}\right)
$$

- There is reason to believe that one can improve this inequality to

$$
\sum_{j=1}^{k}\left(\Lambda_{k+1}-\Lambda_{j}\right)^{2} \leq 2 \sum_{j=1}^{k} \Lambda_{j}\left(\Lambda_{k+1}-\Lambda_{j}\right)
$$

Finite Difference Schemes: Neumann Eigenvalues

Remember that we represent all these discretizations in the form:

$$
\mathcal{L}_{i j} v=\mu^{h} \mathcal{R}_{i j} v .
$$

\mathcal{L} is called the stiffness matrix, while \mathcal{R} is called the mass matrix. In the Neumann case, \mathcal{L} is still represented by

$$
\Delta_{h}=\frac{1}{h^{2}}\left(\begin{array}{ccc}
& 1 & \\
1 & -4 & 1 \\
& 1 &
\end{array}\right)
$$

and (without modifications) \mathcal{R} is represented by the identity. The normal boundary condition is given (for boundary pixels) by

$$
v_{i, j}=\text { average of adjacent "interior" points }
$$

e.g.,

$$
v_{i, j+1}+v_{i+1, j}+v_{i, j-1}=3 v_{i, j}
$$

Hubbard (1968) carried most of the analysis for the Neumann finite difference scheme (à la Weinberger).

Finite Difference Schemes: Clamped Plate

$$
\begin{equation*}
\Delta_{h}^{2} v=\Gamma^{h} v \tag{4}
\end{equation*}
$$

The result of applying $\Delta_{h}^{2} v=\Delta_{h}\left(\Delta_{h} v\right)$ is a 13-point discrete scheme:

$$
\begin{align*}
h^{4} \Delta_{h}^{2} v & =v(x, y-2 h) \\
& +2 v(x-h, y-h)-8 v(x, y-h)+2 v(x+h, y-h) \\
& +v(x-2 h, y)-8 v(x-h, y)+20 v(x, y) \\
& -8 v(x+h, y)+v(x+2 h, y)+2 v(x-h, y+h) \\
& -8 v(x, y+h)+2 v(x+h, y+h)+v(x, y+2 h) \tag{5}
\end{align*}
$$

Finite Difference Schemes: Clamped Plate, Cont'd

The recursion is given by:

$$
\begin{align*}
h^{4}\left(\Delta_{h}^{2} v\right)_{i j} & =v_{i, j-2} \\
& +2 v_{i-1, j-1}-8 v_{i, j-1}+2 v_{i+1, j-1} \\
& +v_{i-2, j}-8 v_{i-1, j}+20 v_{i, j} \\
& -8 v_{i+1, j}+v_{i+2, j}+2 v_{i-1, j+1} \\
& -8 v_{i, j+1}+2 v_{i+1, j+1}+v_{i, j+2} \tag{6}
\end{align*}
$$

The boundary pixels are subject to:

$$
v_{i, j}=0
$$

and

$$
v_{i, j}=\text { average of adjacent "interior" points }
$$

Finite Difference Schemes: Clamped Plate

The stiffness matrix is represented by:

$$
\Delta_{h}^{2}=\frac{1}{h^{4}}\left(\begin{array}{ccccc}
& & 1 & & \\
& 2 & -8 & 2 & \\
1 & -8 & 20 & -8 & 1 \\
& 2 & -8 & 2 & \\
& & 1 & &
\end{array}\right)
$$

Finite Difference Schemes: Clamped Plate

Comparison of known and computed ratios of clamped plate eigenvalues for disks

Known values taken from A. Weinstein (1969)

Γ_{1} / Γ_{2}	0.23083388	0.2332	1%
Γ_{1} / Γ_{3}	0.23083388	0.2332	1%
Γ_{1} / Γ_{4}	0.08578756	0.0908	6%
Γ_{1} / Γ_{5}	0.08578756	0.0850	1%
Γ_{1} / Γ_{6}	0.06597117	0.0678	3%
Γ_{1} / Γ_{7}	0.04007602	0.0419	5%
Γ_{1} / Γ_{8}	0.04007602	0.0419	5%
Γ_{1} / Γ_{9}	0.02820056	0.0294	4%
Γ_{1} / Γ_{10}	0.02820056	0.0294	4%

Comparison of known and computed ratios of clamped plate eigenvalues for squares (A. Weinstein)

	Theoretical low bound	Theoretical upper bound	Computed values	Error from upper bound
Γ_{1} / Γ_{2}	0.23482612	0.24229181	0.2448	1%
Γ_{1} / Γ_{3}	0.23482612	0.24229181	0.2439	1%
Γ_{1} / Γ_{4}	0.10704902	0.11152849	0.1148	3%
Γ_{1} / Γ_{5}	0.07292193	0.07533179	0.0789	5%
Γ_{1} / Γ_{6}	0.07198916	0.07506562	0.0769	2%
Γ_{1} / Γ_{7}	0.04404576	0.04824526	0.0513	6%
Γ_{1} / Γ_{8}	0.04404576	0.04824526	0.0510	6%
Γ_{1} / Γ_{9}	0.02784486	0.02948061	0.0327	11%
Γ_{1} / Γ_{10}	0.02784486	0.02948061	0.0320	9%

Other Methods of Computation

- Weinstein Method (late 30s)
- Weinstein-Aronszajn Method (mid 40s)
- Fichera Method of Orthogonal Invariants (60s, 70s)
- Bazley-Fox-Stadter (1967)
- J. McLaurin (1968)
- Kuttler Method (1972) (à la Weinberger)
- Bauer-Reis (1972)
- C. Wieners (1996)
- Aimi \& Diligenti (1992) ("Buckling" à la Fichera)
- Weinberger (à la Weinberger (for Clamped) and à la Fichera (for Neumann))

Feature Vectors

λ represents any of the eigenvalues μ, Γ, Λ.

$$
\begin{gathered}
F_{1}(\Omega)=\left(\frac{\lambda_{1}}{\lambda_{2}}, \frac{\lambda_{1}}{\lambda_{3}}, \frac{\lambda_{1}}{\lambda_{4}}, \ldots, \frac{\lambda_{1}}{\lambda_{n}}\right) \\
F_{2}(\Omega)=\left(\frac{\lambda_{1}}{\lambda_{2}}, \frac{\lambda_{2}}{\lambda_{3}}, \frac{\lambda_{3}}{\lambda_{4}}, \ldots, \frac{\lambda_{n-1}}{\lambda_{n}}\right) \\
F_{3}(\Omega)=\left(\frac{\lambda_{1}}{\lambda_{2}}-\frac{d_{1}}{d_{2}}, \frac{\lambda_{1}}{\lambda_{3}}-\frac{d_{1}}{d_{3}}, \frac{\lambda_{1}}{\lambda_{4}}-\frac{d_{1}}{d_{4}}, \ldots, \frac{\lambda_{1}}{\lambda_{n}}-\frac{d_{1}}{d_{n}}\right)
\end{gathered}
$$

Here $d_{1} \leq d_{2}, \ldots \leq d_{n}$ are the first n e-values of a disk.

$$
F_{4}(\Omega)=\left(\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{3}}{2 \lambda_{1}}, \frac{\lambda_{4}}{3 \lambda_{1}}, \ldots, \frac{\lambda_{n+1}}{n \lambda_{1}}\right)
$$

(F_{4} scales down the Weyl growth of the eigenvalues.)
For clamped plate:

$$
F_{4}(\Omega)=\left(\frac{\Gamma_{2}}{\Gamma_{1}}, \frac{\Gamma_{3}}{4 \Gamma_{1}}, \frac{\Gamma_{4}}{9 \Gamma_{1}}, \ldots, \frac{\Gamma_{n+1}}{n^{2} \Gamma_{1}}\right)
$$

(F_{4} scales down the Weyl growth of the eigenvalues.)

Experiments: Correct classification rates for hand-drawn

 shapes| | Dirichlet | | Neumann | | Stekloff | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | F_{1} | F_{2} | F_{1} | F_{2} | F_{1} | F_{2} |
| 4 | 60.0% | 91.0% | 87.5% | 91.0% | 40.5% | 34.0% |
| 8 | 94.0% | 94.0% | 94.0% | 94.0% | 45.0% | 41.5% |
| 12 | 94.5% | 93.5% | 94.5% | 94.0% | 50.0% | 42.0% |
| 16 | 92.5% | 78.5% | 92.5% | 91.0% | 61.0% | 57.5% |
| 20 | 95.5% | 94.5% | 95.5% | 94.5% | 55.5% | 56.0% |

Experiments: Standard Deviation of the first F_{2} features for 100 triangles using Dirichlet, Clamped and Buckling Eigenvalues

Experiments

- 40 disks, triangles, rectangles, ellipses, diamonds, and squares (total 240 images) of different sizes and orientations hand written and scanned into computer: Noisy and irregular boundaries
- 300 additional computer generated images of the same shapes were added to the database (aspect ratios vary from 2 to 2.5 for elongated figures): Noise free
- These 300 computer generated images were used to train the neural network with
- Dirichlet, Neumann, Clamped, and Buckling eigenvalues were computed and $n=20 F_{1}, \ldots, F_{4}$ feature vectors from each of the six classes were generated.
- A simple neural network was trained with the 300 computer generated images
- Another 300 computer generated images and the 240 hand-written ones were used in the validation phase

Results for Computer Generated and Hand-Drawn Shapes

Clamped Plate Features								
	F1		F2		F3		F4	
N	CG	HD	CG	HD	CG	HD	CG	HD
4	93.3	90.3	94.0	76.4	93.7	89.6	95.7	92.7
8	95.7	\$7.5	96.0	91.7	95.3	90.3	96.3	91.7
12	97.7	89.6	97.0	92.0	96.0	\$9.6	96.0	93.8
16	98.3	92.4	98.3	80.9	98.0	\$9.6	98.7	92.4
20	98.0	90.3	98.7	84.0	99.0	91.3	97.3	95.1
Ayxg	96.6	90.0	96.8	85.0	96.4	90.1	96.8	93.1

Buckling Plate Features

F1										F2			F3			F4		
N	CG	HD	CG	HD	CG	HD	CG	HD										
4	98.0	91.3	92.7	86.8	92.7	87.8	93.7	92.7										
8	93.7	91.7	94.7	89.9	93.7	87.2	93.3	90.3										
12	94.7	90.3	94.0	85.8	96.0	91.3	95.0	95.8										
16	94.3	92.4	95.3	89.6	96.7	92.4	96.0	95.1										
20	97.7	94.4	94.7	85.4	95.7	94.1	96.0	94.1										
Ayrg	95.7	92.0	94.3	87.5	95.0	90.6	94.8	93.6										

Shape Queries Using Image Databases (SQUID)

 http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html

Experiments on SQUID Database

- Dirichlet, Neumann, buckling plate, and clamped plate features were generated for 195 images of sting ray, snapper, eel, mullet, and flounder-like fish.
- A series of simple neural networks were trained on 65 images from this dataset and tested on the remaining 130 images.
- $n=4,8,12,16$, and 20 eigenvalues were used as inputs into the neural net for each of the model problems.

Experiments on SQUID Database: Correct Classification Rate of the Fish

| | Neumann features | | | | Dirichlet features | | | | Buckling features | | | | Clamped plate features | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N | F1 | F2 | F3 | F4 |
| 4 | 88 | 85 | 89 | 87 | 92 | 95 | 94 | 94 | 87 | 84 | 93 | 85 | 90 | 87 | 92 | 89 |
| 8 | 94 | 89 | 91 | 91 | 93 | 94 | 94 | 94 | 89 | 83 | 92 | 90 | 90 | 86 | 91 | 90 |
| 12 | 91 | 86 | 90 | 92 | 93 | 93 | 94 | 97 | 88 | 84 | 93 | 90 | 92 | 80 | 93 | 96 |
| 16 | 95 | 87 | 95 | 96 | 94 | 91 | 92 | 98 | 91 | 85 | 92 | 92 | 92 | 85 | 93 | 94 |
| 20 | 95 | 88 | 95 | 97 | 94 | 88 | 93 | 98 | 92 | 87 | 93 | 93 | 92 | 81 | 92 | 94 |

Unified Approach to Universal Inequalities

- H. C. Yang inequality is just a discriminant condition in an abstract (purely) algebraic scheme.
- Universal inequalities for Dirichlet eigenvalues of Yang-type and versions recently proved for the clamped plate problem (proved by Wang-Xia, Wu-Cao, etc.) are corollaries to this setting.
- This work generalizes earlier joint work with M. Ashbaugh (Pac. J. Math., 2004)

Setting:

- \mathcal{H} be a complex Hilbert space with inner product \langle,$\rangle ,$
- $A: \mathcal{D} \subset \mathcal{H} \rightarrow \mathcal{H}$ a self-adjoint operator defined on a dense domain \mathcal{D} which is semibounded below and has a discrete spectrum $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$.
- $\left\{T_{k}: \mathcal{D} \rightarrow \mathcal{H}\right\}_{k=1}^{N}:$ a collection of skew-symmetric operators,
- $\left\{B_{k}: T_{k}(\mathcal{D}) \rightarrow \mathcal{H}\right\}_{k=1}^{N}$ a collection of symmetric operators which leave \mathcal{D} invariant, and $\left\{u_{i}\right\}_{i=1}^{\infty}$ the normalized eigenvectors of A, u_{i} corresponding to λ_{i}. We may further assume that $\left\{u_{i}\right\}_{i=1}^{\infty}$ is an orthonormal basis for \mathcal{H}.
- $[A, B]$ denotes the commutator of two operators defined by $[A, B]=A B-B A$, and $\|u\|=\sqrt{\langle u, u\rangle}$.

Main Theorem
 Define:

$$
\begin{aligned}
\beta_{i} & =\sum_{k=1}^{N}\left\langle\left[B_{k}, T_{k}\right] u_{i}, u_{i}\right\rangle \\
\rho_{i} & =\sum_{k=1}^{N}\left\langle\left[A, B_{k}\right] u_{i}, B_{k} u_{i}\right\rangle
\end{aligned}
$$

and

$$
\Lambda_{i}=\sum_{k=1}^{N}\left\|T_{k} u_{i}\right\|^{2}
$$

Statement:
The eigenvalues $\left\{\lambda_{i}\right\}$ of the operator A satisfy the following inequality

$$
\left(\sum_{i=1}^{m} \beta_{i}\left(\lambda_{m+1}-\lambda_{i}\right)^{2}\right)^{2} \leq 4\left(\sum_{i=1}^{m} \rho_{i}\left(\lambda_{m+1}-\lambda_{i}\right)^{2}\right)\left(\sum_{i=1}^{m} \Lambda_{i}\left(\lambda_{m+1}-\lambda_{i}\right)\right)
$$

Consequences:

Facts:

$$
\rho_{i}=\frac{1}{2} \sum_{k=1}^{N}\left\langle\left[B_{k},\left[A, B_{k}\right]\right] u_{i}, u_{i}\right\rangle
$$

- When $T_{k}=\left[A, B_{k}\right]$, one has $\beta_{i}=2 \rho_{i}$,
$\Lambda_{i}=\sum_{k=1}^{N}\left\|\left[A, B_{k}\right] u_{i}\right\|^{2}$. In this case, the statement of the theorem reduces to the familiar H . C. Yang inequality in the abstract setting (Levitin-Parnovski, 2001, Ashbaugh-H., 2004, Harrell-Stubbe 2009):

$$
\sum_{i=1}^{m} \rho_{i}\left(\lambda_{m+1}-\lambda_{i}\right)^{2} \leq \sum_{i=1}^{m} \Lambda_{i}\left(\lambda_{m+1}-\lambda_{i}\right)
$$

Flavor of the Proof

- Start with Rayleigh-Ritz for λ_{m+1}

$$
\begin{gather*}
\lambda_{m+1} \leq \frac{\langle A \phi, \phi\rangle}{\langle\phi, \phi\rangle} \\
\phi_{i}=B u_{i}-\sum_{j=1}^{m} a_{i j} u_{j}, \tag{7}
\end{gather*}
$$

where $a_{i j}=\left\langle B u_{i}, u_{j}\right\rangle$
$-a_{j i}=\overline{a_{i j}}$.

- Let $b_{i j}=\left\langle[A, B] u_{i}, u_{j}\right\rangle$, then

$$
b_{i j}=-\overline{b_{j i}}=\left(\lambda_{j}-\lambda_{i}\right) a_{i j}
$$

Flavor of the Proof, cont'd

- R-R reduces to:

$$
\lambda_{m+1}-\lambda_{i} \leq \frac{\left\langle[A, B] u_{i}, \phi\right\rangle}{\langle\phi, \phi\rangle}
$$

- Also

$$
\left\langle[A, B] u_{i}, \phi_{i}\right\rangle=\left\langle[A, B] u_{i}, B u_{i}\right\rangle-\sum_{j=1}^{m}\left(\lambda_{j}-\lambda_{i}\right)\left|a_{i j}\right|^{2}
$$

- Since T is an antisymmetric operator

$$
\operatorname{Re}\left\langle\phi_{i}, T u_{i}\right\rangle=\operatorname{Re}\left\langle\phi_{i}, T u_{i}-\sum_{j=1}^{m} t_{i j} u_{j}\right\rangle
$$

for $t_{i j}=\left\langle T u_{i}, u_{j}\right\rangle\left(\right.$ since $\left\langle\phi_{i}, u_{j}\right\rangle=0$, for $j=1,2, \ldots, m$.

Flavor of the Proof, cont'd

- For $\gamma>0$:

$$
\operatorname{Re}\left\langle\phi_{i}, T u_{i}\right\rangle \leq \frac{1}{2 \gamma}\left(\lambda_{m+1}-\lambda_{i}\right)\left\|\phi_{i}\right\|^{2}+\frac{\gamma}{2\left(\lambda_{m+1}-\lambda_{i}\right)}\left(\left\|T u_{i}\right\|^{2}-\sum_{j=1}^{m}\left|t_{i j}\right|^{2}\right)
$$

$$
\left(\lambda_{m+1}-\lambda_{i}\right)^{2} \operatorname{Re}\left\langle\phi_{i}, T u_{i}\right\rangle \leq \frac{1}{2 \gamma}\left(\lambda_{m+1}-\lambda_{i}\right)^{3}\left\|\phi_{i}\right\|^{2}
$$

$$
+\frac{\gamma}{2}\left(\lambda_{m+1}-\lambda_{i}\right)\left(\left\|T u_{i}\right\|^{2}-\sum_{j=1}^{m}\left|t_{i j}\right|^{2}\right) .
$$

Flavor of the Proof, cont'd

- Put things together to get

$$
\begin{aligned}
& \left(\lambda_{m+1}-\lambda_{i}\right)^{2} \operatorname{Re}\left\langle\phi_{i}, T u_{i}\right\rangle \\
\leq & \frac{1}{2 \gamma}\left(\lambda_{m+1}-\lambda_{i}\right)^{2}\left(\left\langle[A, B] u_{i}, B u_{i}\right\rangle-\sum_{j=1}^{m}\left(\lambda_{j}-\lambda_{i}\right)\left|a_{i j}\right|^{2}\right) \\
+ & \frac{\gamma}{2}\left(\lambda_{m+1}-\lambda_{i}\right)\left(\left\|T u_{i}\right\|^{2}-\sum_{j=1}^{m}\left|t_{i j}\right|^{2}\right) .
\end{aligned}
$$

- .. after a series of steps, one is led to:

$$
\begin{aligned}
\sum_{i=1}^{m}\left(\lambda_{m+1}-\lambda_{i}\right)^{2}\left\langle[B, T] u_{i}, u_{i}\right\rangle & \leq \frac{1}{\gamma} \sum_{i=1}^{m}\left(\lambda_{m+1}-\lambda_{i}\right)^{2}\left\langle[A, B] u_{i}, B u_{i}\right\rangle \\
& +\gamma \sum_{i=1}^{m}\left(\lambda_{m+1}-\lambda_{i}\right)\left\|T u_{i}\right\|^{2} .
\end{aligned}
$$

- Restore the dependence of T and B on the index $k=1, \ldots N$, then sum on k

Flavor of the Proof, cont'd

- We are led to:

$$
\sum_{i=1}^{m} \beta_{i}\left(\lambda_{m+1}-\lambda_{i}\right)^{2} \leq \frac{1}{\gamma} \sum_{i=1}^{m} \rho_{i}\left(\lambda_{m+1}-\lambda_{i}\right)^{2}+\gamma \sum_{i=1}^{m} \Lambda_{i}\left(\lambda_{m+1}-\lambda_{i}\right)
$$

- Reduce to a quadratic statement in γ which is always ≥ 0, so the discriminant ≤ 0. This is the statement of the theorem.

Thank you!

