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A Unified Approach to Universal Eigenvalues for Second and
Higher Order Elliptic Operators



Quantum Drums: Bibly, Hawk, .. and a Broken Hawk
“.. Construct quantum isospectral nanonstructures with matching
electronic structure”
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Quantum Phase Extraction in Isospeciral Electronic
Nanostructures

Christopher R. Moon, et ai.

Science 319, 782 (2008);

DOl 10.1126/science. 1151490

They also have a construction for another isospectral pair:
Ave-Ave and Beluga



The other model problems

Beyond the Dirichlet eigenvalue problem... one can use:
1. The Free Membrane Problem:

—Av=puv in Q

ov
%—O on 02

Eigenmodes: 0 = g < pp < pz < ---



The Other Model Problems

2. The Clamped Plate Problem:

AN°w=Tw in Q (2)
ow
W—%—O on 89

Eigenmodes: 0 <1 <>, <3< -
3. The Buckling (of a Clamped Plate) Problem:

A’w=-NAw in Q (3)
ow
W—%—O on 0f2

Eigenmodes: 0 <A <Ay < A3 < -+



Motivation for Bilaplacian: Chladni Plates
Ernest Chladni of Saxony, “father of accoustics”
His experiments: vibrated a fixed plate with a violin bow and then
sprinkled sand across it to show the formation of the nodal lines,
mid-1800s (see Bruno Lévy, INRIA)
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Rayleigh Quotients
» Clamped Problem

2
0=

Apply Cauchy-Schwarz:

(o) = (- frooa) = () (feaor)

So )
JalVoP\? _ Ja(bo)?
Jo #? g d?

Or
M2 (Q) < T(Q).

Weinstein: )\% <



Rayleigh Quotients
» Buckling Problem

A 2
0= e

Apply Cauchy-Schwarz:

(fwer) = (- fose) = () (fyeor)
’ [V _ JolB0)

Jo®® = JqIVoP

Or
Ak(£2) < Ai(©2)
Note: Ap < A; (Payne)
See: M. Ashbaugh, “On Universal Inequalities for the Low

Eigenvalues of the Bucklng Problem”, Partial differential equations
and inverse problems, 2004



A flavor of inequalites: Clamped Plate
For simplicity Q C R?
» Nadirashvili proved Rayleigh's conjecture
2,2
Tk,
r>-—2
L ap
(isoperimetric) with kg = 3.19622062
» Weyl asymptotic

1672 k2
Q2
» Levine-Protter proved Li-Yau-type inequality (1985)
Qo> 1672 k>
ST
» Payne-Pdlya-Weinberger (1956):

sz

8 r
M1 — Tk < k;rj, also - <9



A flavor of inequalites: Clamped Plate

2
> Ashbaugh inequality (1998): Txy1 — Tk < 5 (ijzl \/ﬁ>
» Hook and Chen & Qian (1990)

5 k - k
o= (50 ()

improves earlier results by Hile-Yeh (1984)

» Cheng-Yang (2006)
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» Wang-Xia (2007)
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A flavor of inequalities: Buckling Problem
> Pdlya-Szego Conjecture: A1(2) > A1(Q2%)

71.'2

Bramble-Payne: A;(Q2) > 2no

v

[9
> PPW: 2 <3
A1

» Hile-Yeh: & <25

A1
» Ashbaugh: Na+ A <6
» Cheng and Yang1 (2006) proved

k k
DM =N <4 A (M —Ay).
=1 J=1

v

There is reason to believe that one can improve this inequality

to
k

k
> (Mg —N) <2 Z (k1 —

j=1 =



Finite Difference Schemes: Neumann Eigenvalues
Remember that we represent all these discretizations in the form:

Lij v:,uhR,-j v.

L is called the stiffness matrix, while R is called the mass matrix.
In the Neumann case, L is still represented by

1
1 -4 1
1

1

Ah:ﬁ

and (without modifications) R is represented by the identity. The
normal boundary condition is given (for boundary pixels) by

vij = average of adjacent “interior” points
e.g.,
Vij+1 + Vig1j + vij—1 = 3vi.

Hubbard (1968) carried most of the analysis for the Neumann
finite difference scheme (a la Weinberger).



Finite Difference Schemes: Clamped Plate

A%y =Thy (4)

The result of applying A2v = A, (Apv) is a 13-point discrete
scheme:

h*A2v = v(x,y —2h)

2v(x — h,y — h) —8v(x,y — h) + 2v(x + h,y — h)
v(x —2h,y) —8v(x — h,y) + 20v(x, y)

— 8v(x+hy)+v(x+2hy)+2v(x—h,y+h)

— 8v(x,y+h)+2v(x+ hy+h)+v(x,y+2h) (5)

+ +



Finite Difference Schemes: Clamped Plate, Cont'd

The recursion is given by:

h4 (A% V)ij Vij—2

2vi—1j-1 —8Vij—1+2Vit1j-1

+ o+

Vi—oj — 8V,'_1,j + 20V,'J
— 8Viy1j + Vigoj +2vim1 41
= 8Vijt1+ 2Vip1 1 + Vi (6)

The boundary pixels are subject to:
V,"j =0

and
vij = average of adjacent “interior” points



Finite Difference Schemes: Clamped Plate

The stiffness matrix is represented by:

1
) 2 -8 2
A%,:F 1 -8 20 -8 1

2 -8 2

1



Finite Difference Schemes: Clamped Plate




Comparison of known and computed ratios of clamped
plate eigenvalues for disks

Known values taken from A. Weinstein (1969)

Iy/I; 10.23083388| 0.2332 1%
Iy/15 |0.23083388| 0.2332 1%
Iy/Iy |0.08578756| 0.0908 | 6%
Iy/I5 |0.08578756| 0.0850 1%
I/ Ig |0.06597117| 0.0678 | 3%
I{/I5 10.04007602| 0.0419 | 5%
I/ Ig 0.04007602| 0.0419 | 5%
I/ 1o |0.02820056| 0.0294 | 4%
[1/115|0.02820056| 0.0294 | 4%




Comparison of known and computed ratios of clamped

plate eigenvalues for squares (A. Weinstein)

Theoretical | Theoretical |Computed| Error from

low bound |upper bound | wvalues |upper bound
/15 |0.23482612| 0.24229181 | 0.2448 1%
/15 0.23482612| 0.24229181 | 0.2439 1%
\[1/7: |0.10704902| 0.11152849 | 0.1148 3%
/75 10.07292193| 0.07533179 | 0.0789 5%
/T |0.07198916| 0.07506562 | 0.0769 2%
\I/15 0.04404576| 0.04824526 | 0.0513 6%
\[1/Tg |0.04404576| 0.04824526 | 0.0510 6%
\[1/1g |0.02784486| 0.02948061 | 0.0327 11%
/17 |0.02784486| 0.02948061 | 0.0320 9%




Other Methods of Computation

Weinstein Method (late 30s)

Weinstein-Aronszajn Method (mid 40s)

Fichera Method of Orthogonal Invariants (60s, 70s)
Bazley-Fox-Stadter (1967)

J. McLaurin (1968)

Kuttler Method (1972) (a la Weinberger)
Bauer-Reis (1972)

C. Wieners (1996)

Aimi & Diligenti (1992) (“Buckling” a la Fichera)

Weinberger (a la Weinberger (for Clamped) and a la Fichera
(for Neumann))

vV vV vV V. V. Y V. VvV VY%



Feature Vectors
A represents any of the eigenvalues u, I, A.

A1 A1 A1 A1
F(Q) = (22 A
1( ) ()\27)\3’)\4, 7)\n)

(M A2 A3 An—1
F2(Q)_<)\27)\37)\47"'7 )\n )

A1t A di A d A1 dh
Q=224 a A A A
3(0) ()\2 Az di’ha da A, d,,)

Here di < db,... < d, are the first n e-values of a disk.
/\2 )\3 )\4 )\n+1
Fa(D) = —, —, —, ...
4( ) <A1,2A1’3>\17 ) n)\l)

(F4 scales down the Weyl growth of the eigenvalues.)
For clamped plate:

o T3 T4 Mht1
Fa(Q) = =, —, —, ...
+(Q) <r1’4r1’9r1’ " n2r,

(F4 scales down the Weyl growth of the eigenvalues.)




Experiments: Correct classification rates for hand-drawn
shapes

Dirichlet Neumann Stekloff

n F, F, F, F, F, F,
60.0% | 91.0% | 87.5% | 91.0% | 40.5% | 34.0%
8 | 94.0% | 94.0% | 94.0% | 94.0% | 45.0% | 41.5%
12| 94.5% | 93.5% | 94.5% | 94.0% | 50.0% | 42.0%
16| 92.5% | 78.5% | 92.5% | 91.0% | 61.0% | 57.5%
20| 95.5% | 94.5% | 95.5% | 94.5% | 55.5% | 56.0%




Experiments: Standard Deviation of the first F, features
for 100 triangles using Dirichlet, Clamped and Buckling
Eigenvalues
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Experiments

» 40 disks, triangles, rectangles, ellipses, diamonds, and squares
(total 240 images) of different sizes and orientations hand
written and scanned into computer: Noisy and irregular
boundaries

» 300 additional computer generated images of the same shapes
were added to the database (aspect ratios vary from 2 to 2.5
for elongated figures): Noise free

» These 300 computer generated images were used to train the
neural network with

» Dirichlet, Neumann, Clamped, and Buckling eigenvalues were
computed and n =20 Fq,..., F4 feature vectors from each of
the six classes were generated.

» A simple neural network was trained with the 300 computer
generated images

» Another 300 computer generated images and the 240
hand-written ones were used in the validation phase



Results for Computer Generated and Hand-Drawn Shapes

Dirichlet Features Clamped Plate Features
Fl F2 F3 F4 F1 F2 F3 F4
N CG HD CG HD CG HD CG HD N CG HD CG HD CG HD CG HD
4 D80 95.1 973 89.2 96.0 91.7 973 958 4 933 903 940 764 937 896 957 917
g 993 941 993 924 98.0 944 993 96.2 g 937 875 960 91.7 953 903 963 917
12 99.0 944 993 924 987 938 993 965 12 97.7 896 970 920 960 896 960 9338
16 993 958 993 941 99.0 962 99.7 963 16 983 924 983 809 950 896 987 924
20 99.7 965 093 8§78 0993 965 99.0 972 20 98.0 903 987 840 99.0 913 973 951
[] Ayrg 991 952 98.9 912 982 945 989 964 [] Avzz  96.6 90.0 96.8 85.0 964 90.1 96.8 93.1
Neumann Features Buckling Plate Features
F1 B2 F3 F4 F1 7 F3 F4
N CG_HD CG HD CG _HD CG HD N CG HD CG HD CG HD CG HD
4 ©9.0 931 99.0 951 983 931 99.0 965 4 98.0 913 927 868 9$2.7 878 937 927
§ $9.3 972 99.7 972 993 983 993 979 8 937 917 947 80.9 937 §7.2 933 903
12 997 97.9 9.0 6.5 100 98.3 99.7 983 12 947 903 940 858 96.0 913 950 958
16 100 936 933 965 100 976 §9.7 936 16 943 924 953 89.6 96.7 924 960 951
20 99.7 979 957 938 100 965 95.7 990 20 977 944 947 8§54 957 941 96.0 §4.1

[] Aviz 996 96.9 989 96.2 99.5 96.8 99.5 95.1 [] Ayrz 957 920 943 87.5 950 00.6 948 036



Shape Queries Using Image Databases (SQUID)
http://www.ee.surrey.ac.uk/CVSSP /demos/css/demo.html

o9 990 o *e *oeoee



Experiments on SQUID Database

» Dirichlet, Neumann, buckling plate, and clamped plate
features were generated for 195 images of sting ray, snapper,
eel, mullet, and flounder-like fish.

> A series of simple neural networks were trained on 65 images
from this dataset and tested on the remaining 130 images.

» n=4,8,12,16, and 20 eigenvalues were used as inputs into
the neural net for each of the model problems.



Experiments on SQUID Database: Correct Classification
Rate of the Fish

Neumann features | Dirichlet feamres | Buckling features | Clamped plate features
N|FI|F |F3 [FA|FI|F2|F3|F4|Fl|FX|F3|Fi| Fl 2 F3 F4
4 |88 |83 |85 (87 | G2|95|94 |04 (87 (84]|93 |85 90 87 92 89
8 (94|59 (01 (91 (93|94 |94 |24 |80 83|02 |00 90 86 21 o0
12]91 |86 |90 (9293|193 | 94|97 |88 |84]93 |90 92 80 93 96
16|95 |87 |95 (96 | 9491 | 92|98 |91 | 8592 |92 92 | 85 | 93 | 94
20193 |88 |95 (97 | 94188 |95 (08 |92 87193 |95] 92 | 81 |92 | &4




Unified Approach to Universal Inequalities

» H. C. Yang inequality is just a discriminant condition in an
abstract (purely) algebraic scheme.

» Universal inequalities for Dirichlet eigenvalues of Yang-type
and versions recently proved for the clamped plate problem
(proved by Wang-Xia, Wu-Cao, etc.) are corollaries to this
setting.

» This work generalizes earlier joint work with M. Ashbaugh
(Pac. J. Math., 2004)



Setting:

» H be a complex Hilbert space with inner product ( , ),

» A:D CH — 'H a self-adjoint operator defined on a dense
domain D which is semibounded below and has a discrete
spectrum A1 < A < A3 < ...

> {Tx:D — H}_|: a collection of skew-symmetric operators,

> {Bi: Tk(D) — H}R_, a collection of symmetric operators
which leave D invariant, and {u;}?°; the normalized
eigenvectors of A, u; corresponding to A;. We may further
assume that {u;}%°; is an orthonormal basis for H.

> [A, B] denotes the commutator of two operators defined by
[A, B] = AB — BA, and ||u|| = /(u, u).



Main Theorem

Define:
N
Bi = A[Bks Tului, ui),
k=1
N
pi =Y ([A, Bilui, Beup),
k=1
and
N
= > [ Twuil*.
k=1
Statement:

The eigenvalues {\;} of the operator A satisfy the following
inequality

(éﬁf(xmﬂ—m-)) <4<Zp,<Am+1 )(ZA 1 — )



Consequences:

Facts:

>
L
pi=5 > {[Bi, [A, Bullui, uy).
k=1
» When Ty = [A, Bi], one has 8; = 2p;,
A = ZLV:1 I[A, Bi]ui||?. In this case, the statement of the
theorem reduces to the familiar H. C. Yang inequality in the
abstract setting (Levitin-Parnovski, 2001, Ashbaugh-H., 2004,
Harrell-Stubbe 2009):

D i Omir = A2 <D A Ami = Ni).
i=1 i=1



Flavor

v

v

v

of the Proof

Start with Rayleigh-Ritz for A1

(Ag, ¢)

(¢, 0)

)\m+1 S

m
¢i = Bu;j — E ajjuj,

j=1
where aj = (Bu;, uj)
aji = ajj.

Let b; = ([A, Bluj, uj), then

b,'j = —bj' = ()‘j — )\,’) a,-j.



Flavor of the Proof, cont'd

» R-R reduces to:

([A, Blui, ¢)
(6.0)

Ami1 — A <

» Also
([A, Blui, ¢i) = ([A, Bluj, Bui) = > (N — A) |ag]>.
j=1
» Since T is an antisymmetric operator

Re(¢;, Tuj) = Re(¢r, Tu; — > _ tjuj),
=1

for tjj = (Tuj, uj) (since (¢j,u;) =0, for j=1,2,...,m.)



Flavor of the Proof, cont'd

» For v > 0:

:"_\’~'3<qi),'7 Tu,-> <

2 2 2\ 2
m+1 — Ai) || @i Tuil]* — i
Oomi = ) 0P+ 57— (n ul §j|t,|)

Jj=1

B[

N~

Ami1— X)) Re(gi, Tu)) < — (Ams1 — M) 164l

(Am1 = (IITU:II2 Z tu|2)

_|_

N2



Flavor of the Proof, cont'd

» Put things together to get

(Amr1 — A1) Re (¢, Tup)

< %(Amﬂ A (([A Bluj, Buj) Z |a,,)

gl
+ 5( m+1 — (TU:||2 Z|tu|2)

> .. after a series of steps, one is led to:

= 1
Z ()\m+1 - Ai)2 <[B, T]U,’, ul - m+1 —
i=1 Tz
m
Z m+1 — H TU,||2

m

DA

1

[A Blu;, Bu;)

> Restore the dependence of T and B on the index k =1,... N, then
sum on k



Flavor of the Proof, cont'd

» We are led to:
m 1 m
D B Omi = X)* < 5 Y 0iAmir = N)* +7 Z/\ mi1—
i=1 i=1

» Reduce to a quadratic statement in v which is always > 0, so the
discriminant < 0. This is the statement of the theorem.

Thank you!




