Surgery methods in spectral geometry

Bernd Ammann

Regensburg
Neuchatel, Switzerland

$$
\text { 9-11 June } 2009
$$

Main Collaborators E. Humbert and M. Dahl

Literature

Yamabe problem

- J. M. Lee, T. H. Parker: The Yamabe problem, Bull. AMS, 17, 37-91, 1987
- E. Hebey: Introduction à l'analyse non-linéaire sur les variétés, Diderot Editeur, Arts et Sciences,

Dirac operators

- H. B. Lawson, M.-L. Michelsohn: Spin Geometry, Princeton University Press, 1989
- T. Friedrich: Dirac Operators in Riemannian Geometry, AMS, Graduate Studies in Mathematics 25, 2000
- O. Hijazi, Spectral properties of the Dirac operator and geometrical structures, Ocampo, Hernan (ed.) et al., Geometric methods for quantum field theory. Proceedings of the summer school, Villa de Leyva, Colombia, July 12-30, 1999. Singapore: World Scientific. 116-169, 2001.

Bordism and Surgery

- J. Milnor; Lectures on the h-cobordism theorem, Princeton
- A. A. Kosinski, Differential manifolds, Pure and Applied Mathematics, vol. 138, Academic Press Inc., Boston, MA, 1993.

Preliminary results

- J. Petean: The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523 (2000), 225-231.
- J. Petean and G. Yun, Surgery and the Yamabe invariant, Geom. Funct. Anal. 9 (1999), no. 6, 1189-1199.
- S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2), 136, 1992, 511-540.
- B. Booß-Bavnbek, K. P. Wojciechowski, Elliptic boundary problems for Dirac operators, Birkhäuser 1993

Subject of the talks

- B. Ammann, P. Jammes, The supremum of first eigenvalues of conformally covariant operators in a conformal class
- B. Ammann, M. Dahl and E. Humbert, Smooth Yamabe invariant and surgery
- B. Ammann, M. Dahl and E. Humbert, Surgery and harmonic spinors
- B. Ammann, M. Dahl and E. Humbert, Harmonic spinors and local deformations of the metric

All our articles are available on
http://www.berndammann.de/publications

Theorem 1. Let Γ be a finitely presented group, $n \geq 5$. Let $W^{n+1} \rightarrow B \Gamma$ be a bordism between $M \rightarrow B \Gamma, M \neq \emptyset$ and $N \rightarrow B \Gamma, N \neq \emptyset$, such that

commutes. Assume that $\pi_{1}(N) \rightarrow \pi_{1}(B \Gamma)=\Gamma$ is an isomorphism.
Also assume that either
(a) M, W, and N are spin, or that
(b) M, W, and N are oriented, and \widetilde{N} does not admit a spin structure.

Then there is a bordism $\bar{W} \rightarrow B \Gamma$ between $M \rightarrow B \Gamma$ and $N \rightarrow B \Gamma$ with (*) that decomposes into surgeries of dimensions $0,1, \ldots, n-3$.

